# construct_tuners() can create a sequence of tuners using a fully-default
# approach, a hybrid approach, or a fully-customized approach. All approaches
# require a roadmap and tuners.
rm <- roadmap(
conf_data = acs_conf_nw,
start_data = acs_start_nw
)
tuner_reg <- list(
v = 3,
grid = 3,
metrics = yardstick::metric_set(yardstick::rmse)
)
tuner_cat <- list(
v = 3,
grid = 3,
metrics = yardstick::metric_set(yardstick::roc_auc)
)
# Fully-default approach
construct_tuners(
roadmap = rm,
default_regression_tuner = tuner_reg,
default_classification_tuner = tuner_cat
)
# Hybrid approach
tuner_cat2 <- list(
v = 3,
grid = 3,
metrics = yardstick::metric_set(yardstick::precision)
)
construct_tuners(
roadmap = rm,
default_regression_tuner = tuner_reg,
default_classification_tuner = tuner_cat,
custom_tuners = list(
list(vars = "hcovany", tuner = tuner_cat2)
)
)
# Fully-customized approach
construct_tuners(
roadmap = rm,
custom_tuners = list(
list(vars = c("hcovany", "empstat", "classwkr"), tuner = tuner_reg),
list(vars = c("age", "famsize", "transit_time", "inctot"), tuner = tuner_cat)
)
)
Run the code above in your browser using DataLab