box.plots(result, solution, show.measures = 1:num.measures,
new.order = 1:solution, show.synthetic.peaks = FALSE,
synthetic.peaks.col = c(2:8, 2:8), show.timestep = NA,
show.cell = NA,
ref = NULL, ref.new.order = new.order, ref.solutions =
solution, col.best.match = "black",
clusterPalette = rainbow(solution))
errors.in.time(xval, result, solution, rain.data = NULL, show.months
= FALSE, new.order = 1:solution, x.range =
1:length(xval), pmax = max(c(result$measured,
result$modelled), na.rm = TRUE), data.colors =
data.frame(measured = c("grey"), modelled =
c("black"), rain = c("black")), clusterPalette =
rainbow(solution), color.cut.off = 0, frac.max = 0.7,
frac.min = 0.4, grid.nx = 0, legend.pos = "topleft",
show.data = TRUE, show.errors = TRUE, show.data.model
= show.data, show.data.measured = show.data, ...)
peaks.in.clusters(result, solution, new.order = 1:solution)
peaks.on.som(result, solution, clusterPalette=rainbow(solution), cell.size = 0.9, mfrow=c(2,ceiling(n.errors/2)), new.order=1:solution)
som.cluster(result, maxc = result$maxc, solutions = 2:maxc, new.order = NA)
som.measure.level(result, show.measures = 1:num.measures, mfrow = c(4, 3))
peaks.measures(result, show.measures = 1:num.measures,
synthetic.peaks.col = c(2:8, 2:8), mfrow = c(2, 3),
col.best.match = "black", do.out = rep(TRUE,
length(show.measures)), single.errors = FALSE,
show.legend = TRUE, show.main = TRUE, y.range = NULL)
scatterplot(measures, show.measures=1:num.measures)
p.validityIndex(result, validity.max)tigervalidityIndex)result$names[show.measures] to see the names of the measureschange.order.clusterspargrid)errors.in.time: occurence of the errors cluster along the time dimension
peaks.in.clusters: table of the position of the synthetic peak errors in the clusters.
som.cluster: Plot the location of the different clusters on the SOM for multiple numbers of clusters.
som.measure.level: Plot the distribution of the performance measures on the SOM.
peaks.measures: responce of the performance measures to the synthetic peak errors.
scatterplot: scatter plot of the performance measures
See package vignette for further details about which plot does what.
data(tiger.example)
new.order <- c(6,3,2,5,4,1)
correlated <- correlated(tiger.single, keep=c("CE","RMSE" ))
opar <- par(mfrow=c(3,5))
box.plots(tiger.single, solution=6, new.order=new.order, show.synthetic.peaks=TRUE)
box.plots(tiger.single, solution=6, new.order=new.order, show.cell=data.frame(x=1,y=1))
par(opar)
errors.in.time(xval=d.dates, result= tiger.single, solution=6, show.months=TRUE, new.order=new.order)
peaks.in.clusters(tiger.single, solution=6, new.order=new.order)
peaks.measures(tiger.single, show.measures=correlated$measures.uniform$to.keep)
scatterplot(tiger.single$measures.uniform, show.measures=correlated$measures.uniform$to.keep)Run the code above in your browser using DataLab