Learn R Programming

timedelay (version 1.0.2)

bayesian: Estimating the time delay via the Bayesian method

Description

bayesian produces posterior samples of all the model parameters one of which is the time delay. This function has options for three MCMC techniques, ancillarity-sufficiency interweaving strategy (ASIS), adaptive MCMC, and tempered transition, to improve the convergence rate of the MCMC and to handle the multimodality of the time delay.

Usage

bayesian(data, data.flux, theta.ini, delta.ini, delta.uniform.range, delta.proposal.scale, tau.proposal.scale, tau.prior.shape, tau.prior.scale, sigma.prior.shape, sigma.prior.scale, asis = TRUE, micro, adaptive.freqeuncy, adaptive.delta =  TRUE, adaptive.delta.factor, adaptive.tau = TRUE, adaptive.tau.factor, sample.size, warmingup.size)

Arguments

data
A (n by 1) matrix; the first column has n observation times, the second column has n flux (or magnitude) values of light A, the third column has n measurement errors of light A, the fourth column has n flux (or magnitude) values of light B, and the fifth column has n measurement errors of light B.
data.flux
"True" if data are recorded on flux scale or "FALSE" if data are on magnitude scale.
theta.ini
Initial values of theta = (mu, sigma, tau) for MCMC.
delta.ini
Initial values of the time delay for MCMC.
delta.uniform.range
The range of the Uniform prior distribution for the time delay. The feasible entire support is c(min(simple[, 1]) - max(simple[, 1]), max(simple[, 1]) - min(simple[, 1])).
delta.proposal.scale
The proposal scale of the Metropolis step for the time delay.
tau.proposal.scale
The proposal scale of the Metropolis-Hastings step for tau.
tau.prior.shape
The shape parameter of the Inverse-Gamma hyper-prior distribution for tau.
tau.prior.scale
The scale parameter of the Inverse-Gamma hyper-prior distribution for tau.
sigma.prior.shape
The shape parameter of the Inverse-Gamma hyper-prior distribution for sigma^2.
sigma.prior.scale
The scale parameter of the Inverse-Gamma hyper-prior distribution for sigma^2. If no prior information is available, we recommend using 2 * 10^(-7).
asis
(Optional) "TRUE" if we use the ancillarity-sufficiency interweaving strategy (ASIS) for c (always recommended). Default is "TRUE".
micro
It determines the order of a polynomial regression model that accounts for the difference between microlensing trends. Default is 3. When zero is assigned, the Bayesian model fits a curve-shifted model.
adaptive.freqeuncy
(If "adaptive.delta = TRUE" or "adaptive.tau = TRUE") The adaptive MCMC is applied for every specified frequency. If it is specified as 500, the adaptive MCMC is applied to every 500th iterstion.
adaptive.delta
(Optional) "TRUE" if we use the adaptive MCMC for the time delay. Default is "TRUE".
adaptive.delta.factor
(If "adaptive.delta = TRUE") The factor, exp(adaptive.delta.factor) or exp(-adaptive.delta.factor), multiplied to the proposal scale of the time delay for adaptive MCMC.
adaptive.tau
(Optional) "TRUE" if we use the adaptive MCMC for tau. Default is "TRUE".
adaptive.tau.factor
(If "adaptive.tau = TRUE") The factor, exp(adaptive.tau.factor) or exp(-adaptive.tau.factor), multiplied to the proposal scale of tau for adaptive MCMC.
sample.size
The number of the posterior samples of each model parameter.
warmingup.size
The number of burn-ins for MCMC.

Value

The outcome of bayesian comprises of:
delta
Posterior samples of the time delay
beta
Posterior samples of the polynomial regression coefficients, beta
mu
Posterior samples of the mean parameter of the O-U process, mu
sigma
Posterior samples of the short term variability of the O-U process, sigma
tau
Posterior samples of the mean reversion time of the O-U process, tau
tau.accept.rate
The acceptance rate of the MCMC for tau
delta.accept.rate
The acceptance rate of the MCMC for the time delay

Details

The function bayesian produces posterior samples of the model parameters one of which is the time delay.

References

Hyungsuk Tak, Kaisey Mandel, David A. van Dyk, Vinay L. Kashyap, Xiao-Li Meng, and Aneta Siemiginowska (in progress). Bayesian and Profile Likelihood Approaches to Time Delay Estimation for Stochastic Time Series of Gravitationally Lensed Quasars

Examples

Run this code

  # Loading datasets
  data(simple)
  head(simple)
  library(mnormt)

  ###############################################
  # Time delay estimation via Bayesian approach #
  ###############################################

  # Cubic microlensing model (m = 3)
  output = bayesian(dat = simple, data.flux = FALSE, theta.ini = c(0, 0.03, 100), 
                    delta.ini = 50, delta.uniform.range = c(0, 100), 
                    delta.proposal.scale = 1, 
                    tau.proposal.scale = 3, tau.prior.shape = 1, tau.prior.scale = 1,
                    sigma.prior.shape = 1, sigma.prior.scale = 2 / 10^7, asis = TRUE, micro = 3,
                    sample.size = 100, warmingup.size = 50)

  names(output)

  # hist(output$delta)
  # plot(output$delta, type = "l")
  # acf(output$delta)

Run the code above in your browser using DataLab