data(bmt)
# Fits Proportional odds model
out <- prop.odds.subdist(Surv(time,cause==1)~platelet+age+tcell,data=bmt,
cause=bmt$cause,cens.code=0,cens.model="KM",causeS=1,detail=0,n.sim=1000)
summary(out)
par(mfrow=c(2,3))
plot(out,sim.ci=2); plot(out,score=1)
pout <- predictpropodds(out,X=model.matrix(~platelet+age+tcell,data=bmt)[,-1])
matplot(pout$time,pout$pred,type="l")
# Fits Proportional odds model with stratified baseline, slow !
out <- Gprop.odds.subdist(Surv(time,cause==1)~-1+factor(platelet)+prop(age)+prop(tcell),data=bmt,
cause=bmt$cause,cens.code=0,cens.model="KM",causeS=1,detail=0,n.sim=1000)
summary(out)
par(mfrow=c(2,3))
plot(out,sim.ci=2); plot(out,score=1)
Run the code above in your browser using DataLab