An alternative way of writing the model : $$F_1(t;X,Z) = \frac{ \exp( \beta^T Z )}{ (X^T A(t)) + \exp( \beta^T Z) }$$ such that $\beta$ is the log-odds-ratio of cause 1 before time t, and $A(t)$ is the odds-ratio.
The modelling formula uses the standard survival modelling given in the survival package.
Gprop.odds.subdist(formula=formula(data),data=sys.parent(),cause=NULL,
beta=0,Nit=50,detail=0,start.time=0, max.time=NULL,
id=NULL,n.sim=500,weighted.test=0,sym=0,mle.start=0,causeS=1,
cens.code=0,cens.model="KM")
Martinussen and Scheike, Dynamic Regression Models for Survival Data, Springer (2006).
data(bmt)
# Fits Proportional odds model
out <- Gprop.odds.subdist(Surv(time,cause==1)~prop(platelet)+prop(age)+prop(tcell),data=bmt,
cause=bmt$cause,cens.code=0,cens.model="KM",causeS=1,detail=0,n.sim=1000)
summary(out)
par(mfrow=c(2,3))
plot(out,sim.ci=2); plot(out,score=1)
# Fits Proportional odds model with stratified baseline
out <- Gprop.odds.subdist(Surv(time,cause==1)~-1+factor(platelet)+prop(age)+prop(tcell),data=bmt,
cause=bmt$cause,cens.code=0,cens.model="KM",causeS=1,detail=0,n.sim=1000)
summary(out)
par(mfrow=c(2,3))
plot(out,sim.ci=2); plot(out,score=1)
Run the code above in your browser using DataLab