Learn R Programming

timereg (version 1.8.6)

pe.sasieni: Fits Proportional excess hazards model with fixed offsets

Description

Fits proportional excess hazards model. The Sasieni proportional excess risk model.

The models are written using the survival modelling given in the survival package.

Usage

pe.sasieni(formula=formula(data),data=sys.parent(),
id=NULL,start.time=0,max.time=NULL,offsets=0,Nit=50,detail=0,n.sim=500)

Arguments

formula
a formula object, with the response on the left of a `~' operator, and the terms on the right. The response must be a survival object as returned by the `Surv' function.
data
a data.frame with the variables.
id
gives the number of individuals.
start.time
starting time for considered time-period.
max.time
stopping considered time-period if different from 0. Estimates thus computed from [0,max.time] if max.time>0. Default is max of data.
offsets
fixed offsets giving the mortality.
Nit
number of itterations.
detail
if detail is one, prints iteration details.
n.sim
number of simulations, 0 for no simulations.

Value

  • Returns an object of type "pe.sasieni". With the following arguments:
  • cumbaseline of Cox model excess risk.
  • var.cumpointwise variance estimates for estimated cumulatives.
  • gammaestimate of relative risk terms of model.
  • var.gammavariance estimates for gamma.
  • Utscore process for Cox part of model.
  • D2linvThe inverse of the second derivative.
  • scorefinal score
  • test.Propre-sampled absolute supremum values.
  • pval.Propp-value based on resampling.

Details

The program assumes that there are no ties, and if such are present random noise is added to break the ties.

References

Martinussen and Scheike, Dynamic Regression Models for Survival Data, Springer Verlag (2006).

Sasieni, P.D., Proportional excess hazards, Biometrika (1996), 127--41.

Cortese, G. and Scheike, T.H., Dynamic regression hazards models for relative survival (2007), submitted.

Examples

Run this code
data(mela.pop)
out<-pe.sasieni(Surv(start,stop,status==1)~age+sex,mela.pop,
id=1:205,Nit=10,max.time=7,offsets=mela.pop$rate,detail=0,n.sim=100)
summary(out)

ul<-out$cum[,2]+1.96*out$var.cum[,2]^.5
ll<-out$cum[,2]-1.96*out$var.cum[,2]^.5
plot(out$cum,type="s",ylim=range(ul,ll))
lines(out$cum[,1],ul,type="s"); lines(out$cum[,1],ll,type="s")
# see also prop.excess function

Run the code above in your browser using DataLab