Learn R Programming

timetools (version 1.15.3)

timetools-package: Seasonal/Sequential (Instants/Durations, Even or not) Time Series

Description

Objects to manipulate sequential and seasonal time series. Sequential time series based on time instants and time durations are handled. Both can be regularly or unevenly spaced (overlapping durations are allowed).

Only POSIX* format are used for dates and times.

The following classes are provided : POSIXcti, POSIXctp, TimeIntervalDataFrame, TimeInstantDataFrame, SubtimeDataFrame ; methods to switch from a class to another and to modify the time support of series (hourly time series to daily time series for instance) are also defined.

Tools provided can be used for instance to handle environmental monitoring data (not always produced on a regular time base).

Arguments

Author

Vladislav Navel <vnavel@yahoo.fr>

See Also

TimeInstantDataFrame, TimeIntervalDataFrame, changeSupport, SubtimeDataFrame, POSIXcti, POSIXctp

Examples

Run this code
ti1 <- TimeIntervalDataFrame (
	c('2010-01-01', '2010-02-01'), c('2010-02-01', '2010-02-02'),
	'UTC', data.frame(ex1=1:2) )

ti2 <- TimeIntervalDataFrame (
	c('2010-01-01', '2010-02-01', '2010-02-02'), NULL,
	'UTC', data.frame(ex1=1:2) )

all.equal (ti1, ti2)

ti3 <- TimeIntervalDataFrame (
	c('2010-01-01', '2010-01-02', '2010-01-04'), NULL,
	'UTC', data.frame(ex3=c(6, 1.5)))

# weighted mean over a period of 3 days with at least 75% of
# coverage (NA is retunr if not)
ti3
d <- POSIXctp(unit='day')
changeSupport (ti3, 3L*d, 0.75)


ti4 <- TimeIntervalDataFrame (
	c('2010-01-01', '2010-01-02', '2010-01-04', 
	  '2010-01-07', '2010-01-09', '2010-01-10'), NULL,
	'UTC', data.frame(ex4=c(6, 1.5, 5, 3, NA)))

# weighted mean over a period of 3 days with at least 75% of
# coverage (NA is retunr if not) or 50%
ti4
changeSupport (ti4, 3L*d, 0.75)
changeSupport (ti4, 3L*d, 0.5)


Run the code above in your browser using DataLab