Learn R Programming

timma (version 1.2.0)

drugRank: Generate the list of ranked drug combinations

Description

A function to provide a list of drug combinations ranked by their synergy scores

Usage

drugRank(profile_select, predicted_matrix, sens)

Arguments

profile_select
the selected drug-target interaction data
predicted_matrix
the predicted efficacy matrix
sens
the drug sensitivity vector.

Value

  • a matrix contains the information about the list of drug combinations ranked by their synergy scores.

References

Tang J, Karhinen L, Xu T, Szwajda A, Yadav B, Wennerberg K, Aittokallio T. Target inhibition networks: predicting selective combinations of druggable targets to block cancer survival pathways. PLOS Computational Biology 2013; 9: e1003226.

Examples

Run this code
data(tyner_interaction_binary)
data(tyner_sensitivity)
float<-sffsBinary(tyner_interaction_binary, tyner_sensitivity[, 1], max_k = 8)
k_select<-float$k_sel
x<-data.frame(tyner_interaction_binary)
kinase_names <- dimnames(x)[[2]]
select_kinase_names <- findSameSet(x, k_select, kinase_names)
gc_timma <- graycode3(length(k_select))
gc_names <- graycodeNames(length(k_select), select_kinase_names, gc_timma$gc_row, gc_timma$gc_col)
nr <- gc_names$nr
nc <- t(gc_names$nc)
timma_row <- nrow(nr) + nrow(nc)
timma_col <- ncol(nr) + ncol(nc)
timma <- array("", dim = c(timma_row, timma_col))
timma[(nrow(nc) + 1):timma_row, 1:ncol(nr)] <- nr
timma[1:nrow(nc), (ncol(nr) + 1):timma_col] <- nc
timma[(nrow(nc) + 1):timma_row, (ncol(nr) + 1):timma_col] <- float$timma$dummy
profile_select<-data.frame(tyner_interaction_binary)[, k_select]
drug_combo_rank<-drugRank(profile_select, timma, tyner_sensitivity[, 1])

Run the code above in your browser using DataLab