Learn R Programming

timsac (version 1.2.7)

tvspc: Time Evolution of Power Spectra of Time Varying AR model

Description

Estimate the time evolution of the power spectra of time varying AR model.

Usage

tvspc(ar.order, sigma2, arcoef, var=NULL, span, nf=200)

Arguments

ar.order
AR order.
sigma2
variance of the observational noise.
arcoef
time varying AR coefficients.
var
time varying variance.
span
local stationary span.
nf
number of frequencies in evaluating spectrum.

Value

  • spectime varying spectrum.

References

Kitagawa, G. (1993) Time series analysis programing (in Japanese). The Iwanami Computer Science Series. Kitagawa, G. and Gersch, W. (1996) Smoothness Priors Analysis of Time Series. Lecture Notes in Statistics, No.116, Springer-Verlag. Kitagawa, G. and Gersch, W. (1985) A smoothness priors time varying AR coefficient modeling of nonstationary time series. IEEE trans. on Automatic Control, AC-30, 48-56.

Examples

Run this code
data(MYE1F) # an earthquake wave data
  z <- tvar(MYE1F, 4, 2, 20, c(630,1026), 6.6e-06, 1.0e-06)
  spec <- tvspc(4, z$sigma2, z$arcoef,, 20)
  persp(spec$x, spec$y, spec$z, expand=0.5, theta=20, col = "lightblue", ticktype="detailed",
        xlab="f", ylab="n", zlab="log p(f)")

Run the code above in your browser using DataLab