baysea(y, period=12, span=4, shift=1, forecast=0, trend.order=2,
seasonal.order=1, year=0, month=1, out=0, rigid=1,
zersum=1, delta=7, alpha=0.01, beta=0.01, gamma=0.1,
spec=TRUE, plot=TRUE, separate.graphics=FALSE)
seasonal.order
is smaller than or equal to span
.year
)
}year
=0 this parameter is ignored.trend
, adjust
, smoothed
, season
and irregular
.year
> 0.y
-trend
-season
-tday
-outlier
.trend
-irregular
.trend
+season
+tday
.acov
(autocovariances), acor
(normalized covariances), mean
, v
(innovation variance), aic
(AIC), parcor
(partial autocorrelation)
and rspec
(rational spectrum) of irregular if spec
=TRUE.acov
, acor
, mean
, v
, aic
, parcor
and rspec
of differenced adjusted series if spec
=TRUE.acov
, acor
, mean
, v
, aic
and parcor
of differenced trend series if spec
=TRUE.acov
, acor
, mean
, v
, aic
and parcor
of differenced seasonal series if spec
=TRUE.y
into the form
$$y(t) = T(t) + S(t) + I(t) + TDC(t) + OCF(t)$$
where $T(t)$ is trend component, $S(t)$ is seasonal component, $I(t)$ is irregular, $TDC(t)$ is trading day factor and $OCF(t)$ is outlier correction factor.
For the purpose of comparison of models the criterion ABIC is defined
$$ABIC = -2 \log(maximum\ likelihood\ of\ the\ model).$$
Smaller value of ABIC represents better fit.data(LaborData)
baysea(LaborData, forecast=12)
Run the code above in your browser using DataLab