Learn R Programming

timsac (version 1.3.0)

exsar: Exact Maximum Likelihood Method of Scalar AR Model Fitting

Description

Produce exact maximum likelihood estimates of the parameters of a scalar AR model.

Usage

exsar(y, max.order=NULL, plot=FALSE)

Arguments

y
a univariate time series.
max.order
upper limit of AR order. Default is $2 \sqrt{n}$, where $n$ is the length of the time series y.
plot
logical. If TRUE daic is plotted.

Value

  • meanmean.
  • varvariance.
  • vinnovation variance.
  • aicAIC.
  • aicminminimum AIC.
  • daicAIC-aicmin.
  • order.maiceorder of minimum AIC.
  • v.maiceMAICE innovation variance.
  • arcoef.maiceMAICE AR coefficients.
  • v.mlemaximum likelihood estimates of innovation variance.
  • arcoef.mlemaximum likelihood estimates of AR coefficients.

Details

The AR model is given by $$y(t) = a(1)y(t-1) + .... + a(p)y(t-p) + u(t)$$ where $p$ is AR order and $u(t)$ is a zero mean white noise.

References

H.Akaike, G.Kitagawa, E.Arahata and F.Tada (1979) Computer Science Monograph, No.11, Timsac78. The Institute of Statistical Mathematics.

Examples

Run this code
data(Canadianlynx)
  z <- exsar(Canadianlynx, max.order=14)
  z$arcoef.maice
  z$arcoef.mle

Run the code above in your browser using DataLab