Learn R Programming

timsac (version 1.3.0)

fpeaut: FPE Auto

Description

Perform FPE(Final Prediction Error) computation for one-dimensional AR model.

Usage

fpeaut(y, max.order=NULL)

Arguments

y
a univariate time series.
max.order
upper limit of model order. Default is $2 \sqrt{n}$, where $n$ is the length of the time series y.

Value

  • orderminorder of minimum FPE.
  • best.arAR coefficients with minimum FPE.
  • sigma2m= sigma2(ordermin).
  • fpeminminimum FPE.
  • rfpeminminimum RFPE.
  • ofpeOFPE.
  • arcoefAR coefficients.
  • sigma2$\sigma^2.$
  • fpeFPE (Final Prediction Error).
  • rfpeRFPE.
  • parcorpartial correlation.
  • chi2chi-squared.

Details

The AR model is given by $$y(t) = a(1)y(t-1) + .... + a(p)y(t-p) + u(t)$$ where $p$ is AR order and $u(t)$ is a zero mean white noise.

References

H.Akaike and T.Nakagawa (1988) Statistical Analysis and Control of Dynamic Systems. Kluwer Academic publishers.

Examples

Run this code
y <- arima.sim(list(order=c(2,0,0), ar=c(0.64,-0.8)), n=200)
  fpeaut(y, max.order=20)

Run the code above in your browser using DataLab