Learn R Programming

timsac (version 1.3.0)

markov: Maximum Likelihood Computation of Markovian Model

Description

Compute maximum likelihood estimates of Markovian model.

Usage

markov(y)

Arguments

y
a multivariate time series.

Value

  • idid[i]$=1$ means that the $i$-th row of $F$ contains free parameters.
  • irir[i] denotes the position of the last non-zero element within the $i$-th row of $F$.
  • ijij[i] denotes the position of the $i$-th non-trivial row within $F$.
  • ikik[i] denotes the number of free parameters within the $i$-th non-trivial row of $F$.
  • gradgradient vector.
  • matFiinitial estimate of the transition matrix $F$.
  • matFtransition matrix $F$.
  • matGinput matrix $G$.
  • davvarDAVIDON variance.
  • arcoefAR coefficient matrices. arcoef[i,j,k] shows the value of $i$-th row, $j$-th column, $k$-th order.
  • impulsimpulse response matrices.
  • macoefMA coefficient matrices. macoef[i,j,k] shows the value of $i$-th row, $j$-th column, $k$-th order.
  • vinnovation variance.
  • aicAIC.

Details

This function is usually used with simcon.

References

H.Akaike, E.Arahata and T.Ozaki (1975) Computer Science Monograph, No.5, Timsac74, A Time Series Analysis and Control Program Package (1). The Institute of Statistical Mathematics.

Examples

Run this code
x <- matrix(rnorm(1000*2),1000,2)
  ma <- array(0,dim=c(2,2,2))
  ma[,,1] <- matrix(c( -1.0,  0.0,
                        0.0, -1.0), 2,2,byrow=TRUE)
  ma[,,2] <- matrix(c( -0.2,  0.0,
                       -0.1, -0.3), 2,2,byrow=TRUE)
  y <- mfilter(x,ma,"convolution")
  ar <- array(0,dim=c(2,2,3))
  ar[,,1] <- matrix(c( -1.0,  0.0,
                        0.0, -1.0), 2,2,byrow=TRUE)
  ar[,,2] <- matrix(c( -0.5, -0.2,
                       -0.2, -0.5), 2,2,byrow=TRUE)
  ar[,,3] <- matrix(c( -0.3, -0.05,
                       -0.1, -0.30), 2,2,byrow=TRUE)
  z <- mfilter(y,ar,"recursive")
  markov(z)

Run the code above in your browser using DataLab