Learn R Programming

timsac (version 1.3.0)

mulmar: Multivariate Case of Minimum AIC Method of AR Model Fitting

Description

Fit a multivariate autoregressive model by the minimum AIC procedure. Only the possibilities of zero coefficients at the beginning and end of the model are considered. The least squares estimates of the parameters are obtained by the householder transformation.

Usage

mulmar(y, max.order=NULL, plot=FALSE)

Arguments

y
a multivariate time series.
max.order
upper limit of the order of AR model. Default is $2 \sqrt{n}$, where $n$ is the length of the time series y.
plot
logical. If TRUE daic[[1]],...,daic[[d]] are plotted, where $d$ is the dimension of the multivariate time series.

Value

  • meanmean.
  • varvariance.
  • vinnovation variance.
  • aicAIC.
  • aicminminimum AIC.
  • daicAIC-aicmin.
  • order.maiceorder of minimum AIC.
  • v.maiceMAICE innovation variance.
  • npnumber of parameters.
  • jndspecification of $i$-th regressor.
  • subregcoefsubset regression coefficients.
  • rvarresidual variance.
  • aicffinal estimate of AIC ($=n\log$(rvar)$+2$np).
  • respnsinstantaneous response.
  • matvinnovation variance matrix.
  • morderorder of the MAICE model.
  • arcoefAR coefficients. arcoef[i,j,k] shows the value of $i$-th row, $j$-th column, $k-$th order.
  • aicsumthe sum of aicf.

Details

Multivariate autoregressive model is defined by $$y(t) = A(1)y(t-1) + A(2)y(t-2) +\ldots+ A(p)y(t-p) + u(t),$$ where $p$ is order of the model and $u(t)$ is Gaussian white noise with mean $0$ and variance matrix matv. AIC is defined by $$AIC = n \log(det(v)) + 2k,$$ where $n$ is the number of data, $v$ is the estimate of innovation variance matrix, $det$ is the determinant and $k$ is the number of free parameters.

References

G.Kitagawa and H.Akaike (1978) A Procedure for The Modeling of Non-stationary Time Series. Ann. Inst. Statist. Math., 30, B, 351--363. H.Akaike, G.Kitagawa, E.Arahata and F.Tada (1979) Computer Science Monograph, No.11, Timsac78. The Institute of Statistical Mathematics.

Examples

Run this code
# Example 1
  data(Powerplant)
  z <- mulmar(Powerplant, max.order=10)
  z$arcoef

  # Example 2
  ar <- array(0,dim=c(3,3,2))
  ar[,,1] <- matrix(c(0.4,  0,   0.3,
                      0.2, -0.1, -0.5,
                      0.3,  0.1, 0),3,3,byrow=TRUE)
  ar[,,2] <- matrix(c(0,  -0.3,  0.5,
                      0.7, -0.4,  1,
                      0,   -0.5,  0.3),3,3,byrow=TRUE)
  x <- matrix(rnorm(200*3),200,3)
  y <- mfilter(x,ar,"recursive")
  z <- mulmar(y, max.order=10)
  z$arcoef

Run the code above in your browser using DataLab