# Univariate AR1
dsem = "
X -> X, 1, rho
X <-> X, 0, sigma
"
make_dsem_ram( dsem=dsem, variables="X", times=1:4 )
# Univariate AR2
dsem = "
X -> X, 1, rho1
X -> X, 2, rho2
X <-> X, 0, sigma
"
make_dsem_ram( dsem=dsem, variables="X", times=1:4 )
# Bivariate VAR
dsem = "
X -> X, 1, XtoX
X -> Y, 1, XtoY
Y -> X, 1, YtoX
Y -> Y, 1, YtoY
X <-> X, 0, sdX
Y <-> Y, 0, sdY
"
make_dsem_ram( dsem=dsem, variables=c("X","Y"), times=1:4 )
# Dynamic factor analysis with one factor and two manifest variables
# (specifies a random-walk for the factor, and miniscule residual SD)
dsem = "
factor -> X, 0, loadings1
factor -> Y, 0, loadings2
factor -> factor, 1, NA, 1
X <-> X, 0, NA, 0 # No additional variance
Y <-> Y, 0, NA, 0 # No additional variance
"
make_dsem_ram( dsem=dsem, variables=c("X","Y","factor"), times=1:4 )
# ARIMA(1,1,0)
dsem = "
factor -> factor, 1, rho1 # AR1 component
X -> X, 1, NA, 1 # Integrated component
factor -> X, 0, NA, 1
X <-> X, 0, NA, 0 # No additional variance
"
make_dsem_ram( dsem=dsem, variables=c("X","factor"), times=1:4 )
# ARIMA(0,0,1)
dsem = "
factor -> X, 0, NA, 1
factor -> X, 1, rho1 # MA1 component
X <-> X, 0, NA, 0 # No additional variance
"
make_dsem_ram( dsem=dsem, variables=c("X","factor"), times=1:4 )
Run the code above in your browser using DataLab