Learn R Programming

tipse (version 1.2)

pool_results: Pooling results using Rubin's Rule

Description

Pooling results from multiple imputations using Rubin's Rule

Usage

pool_results(dat, cox.fit, conf.level = 0.95)

Value

a data.frame of pooled hazard ratio and confidence interval estimate using Rubin's Rule

Arguments

dat

a list of data.frames from multiple imputation using one alpha or kappa parameter

cox.fit

a coxph object which is used to compute HRs for each imputed datasets

conf.level

confidence level for the returned confidence interval, default to be 0.95.

Details

The Rubin's rule is applied to the Cox PH model results across imputed datasets as:

  1. Compute pooled HR: $$\bar{HR}_\lambda = \exp\Bigg(\frac{1}{M} \sum_{m=1}^{M} \log(HR_m)\Bigg)$$

  2. Compute pooled variance: $$\bar{\sigma}_\lambda^2 = \frac{1}{M} \sum_{m=1}^{M} \sigma_m^2 + \frac{1 + \frac{1}{M}}{M-1} \sum_{m=1}^{M} \big(\log(HR_m) - \overline{\log(HR_\lambda)}\big)^2$$

  3. Compute CI: $$\bar{HR}_\lambda \times \exp\big(\pm t_{\alpha/2} \sqrt{\bar{\sigma}_\lambda^2}\big)$$