## Not run:
# if (require(tmap)) {
# data(land)
#
# # original map
# qtm(land, raster="cover_cls")
#
# # map decreased by factor 4 for each dimension
# land4 <- aggregate_map(land, fact=4, agg.fun="modal")
# qtm(land4, raster="cover_cls")
#
# # map decreased by factor 8, where the variable trees is
# # aggregated with mean, min, and max
# land_trees <- aggregate_map(land, fact=8,
# agg.fun=list(trees="mean", trees="min", trees="max"))
#
# tm_shape(land_trees) +
# tm_raster(c("trees.1", "trees.2", "trees.3"), title="Trees (%)") +
# tm_facets(free.scales=FALSE) +
# tm_layout(panel.labels = c("mean", "min", "max"))
#
# data(NLD_muni, NLD_prov)
#
# # aggregate Dutch municipalities to provinces
# NLD_prov2 <- aggregate_map(NLD_muni, by="province",
# agg.fun = list(population="sum", origin_native="mean", origin_west="mean",
# origin_non_west="mean", name="modal"), weights = "population")
#
# # see original provinces data
# NLD_prov@data[, c("name", "population", "origin_native", "origin_west", "origin_non_west")]
#
# # see aggregates data (the last column corresponds to the most populated municipalities)
# NLD_prov2@data
#
# # largest municipalities in area per province
# aggregate_map(NLD_muni, by="province",
# agg.fun = list(name="modal"), weights = "AREA")@data
# }
# ## End(Not run)
Run the code above in your browser using DataLab