- Y
continuous or binary outcome variable
- A
binary treatment indicator, 1
- treatment, 0
- control
- W
vector, matrix, or dataframe containing baseline covariates
- Z
optional binary indicator for intermediate covariate for controlled direct effect estimation
- Delta
indicator of missing outcome or treatment assignment. 1
- observed, 0
- missing
- Q
optional \(n \times 2\) matrix of initial values for \(Q\) portion of the likelihood, \((E(Y|A=0,W), E(Y|A=1,W))\)
- Q.Z1
optional \(n \times 2\) matrix of initial values for \(Q\) portion of the likelihood, \((E(Y|Z=1,A=0,W), E(Y|Z=1,A=1,W))\). (When specified, values for \(E(Y|Z=0,A=0,W), E(Y|Z=0,A=1,W)\) are passed in using the Q
argument
- Qform
optional regression formula for estimation of \(E(Y|A,W)\), suitable for call to glm
- Qbounds
vector of upper and lower bounds on Y
and predicted values for initial Q
. Defaults to the range of Y
, widened by 1% of the min and max values.
- Q.SL.library
optional vector of prediction algorithms to use for SuperLearner
estimation of initial Q
- cvQinit
logical, if TRUE
, estimates cross-validated predicted values, default=TRUE
- g1W
optional vector of conditional treatment assingment probabilities, \(P(A=1|W)\)
- gform
optional regression formula of the form A~W
, if specified this overrides the call to SuperLearner
- gbound
value between (0,1) for truncation of predicted probabilities. See Details
section for more information
- pZ1
optional\(n \times 2\) matrix of conditional probabilities \(P(Z=1|A=0,W), P(Z=1|A=1,W)\)
- g.Zform
optional regression formula of the form Z~A+W
, if specified this overrides the call to SuperLearner
- pDelta1
optional matrix of conditional probabilities for missingness mechanism, \(n \times 2\) when Z
is NULL
\(P(Delta=1|A=0,W), P(Delta=1|A=1,W)\). \(n \times 4\) otherwise, \(P(Delta=1|Z=0,A=0,W), P(Delta=1|Z=0,A=1,W), P(Delta=1|Z=1,A=0,W), P(Delta=1|Z=1,A=1,W)\)
- g.Deltaform
optional regression formula of the form Delta~A+W
, if specified this overrides the call to SuperLearner
- g.SL.library
optional vector of prediction algorithms to use for SuperLearner
estimation of g1W
- g.Delta.SL.library
optional vector of prediction algorithms to use for SuperLearner
estimation of pDelta1
- family
family specification for working regression models, generally ‘gaussian’ for continuous outcomes (default), ‘binomial’ for binary outcomes
- fluctuation
‘logistic’ (default), or ‘linear’
- alpha
used to keep predicted initial values bounded away from (0,1) for logistic fluctuation
- id
optional subject identifier
- V.Q
Number of cross-validation folds for super learner estimation of Q
- V.g
Number of cross-validation folds for super learner estimation of g
- V.Delta
Number of cross-validation folds for super learner estimation of missingness mechanism
- V.Z
Number of cross-validation folds for super learner estimation of intermediate variable
- verbose
status messages printed if set to TRUE
(default=FALSE
)
- Q.discreteSL
if TRUE, discreteSL is used instead of ensemble SL. Ignored when SL not used to estimate Q
- g.discreteSL
if TRUE, discreteSL is used instead of ensemble SL. Ignored when SL not used to estimate g1W
- g.Delta.discreteSL
if TRUE, discreteSL is used instead of ensemble SL. Ignored when SL not used to estimate P(Delta = 1 | A,W)
- prescreenW.g
Option to screen covariates before estimating g in order to retain only those associated with the outcome (Recommend FALSE in low dimensional datasets)
- min.retain
Minimum number of covariates to retain when prescreening covariates for g. Ignored when prescreenW.g=FALSE
- target.gwt
When TRUE, move g from denominator of clever covariate to the weight when fitting epsilon
- automate
When TRUE, all tuning parameters are set to their default values. Number of cross validation folds, truncation level for g, and
decision to prescreen covariates for modeling g are set data-adaptively based on sample size (see details).
- obsWeights
Optional observation weights to account for biased sampling
- alpha.sig
significance level for constructing 1-alpha.sig
confidence intervals
- B
Number of boostrap iterations. Set \(B>1\) to obtain targeted bootstrap based inference in addition to IC-based inference (see Details).