- Y
continuous or binary outcome variable
- A
binary treatment indicator, 1 - treatment, 0 - control
- W
vector, matrix, or dataframe containing baseline covariates
- Z
optional binary indicator for intermediate covariate for controlled direct effect estimation
- Delta
indicator of missing outcome or treatment assignment. 1 - observed, 0 - missing
- Q
optional \(n \times 2\) matrix of initial values for \(Q\) portion of the likelihood, \((E(Y|A=0,W), E(Y|A=1,W))\)
- Q.Z1
optional \(n \times 2\) matrix of initial values for \(Q\) portion of the likelihood, \((E(Y|Z=1,A=0,W), E(Y|Z=1,A=1,W))\). (When specified, values for \(E(Y|Z=0,A=0,W), E(Y|Z=0,A=1,W)\) are passed in using the Q argument
- Qform
optional regression formula for estimation of \(E(Y|A,W)\), suitable for call to glm
- Qbounds
vector of upper and lower bounds on Y and predicted values for initial Q. Defaults to the range of Y, widened by 1% of the min and max values.
- Q.SL.library
optional vector of prediction algorithms to use for SuperLearner estimation of initial Q
- cvQinit
logical, if TRUE, estimates cross-validated predicted values, default=TRUE
- g1W
optional vector of conditional treatment assingment probabilities, \(P(A=1|W)\)
- gform
optional regression formula of the form A~W, if specified this overrides the call to SuperLearner
- gbound
value between (0,1) for truncation of predicted probabilities. See Details section for more information
- pZ1
optional\(n \times 2\) matrix of conditional probabilities \(P(Z=1|A=0,W), P(Z=1|A=1,W)\)
- g.Zform
optional regression formula of the form Z~A+W, if specified this overrides the call to SuperLearner
- pDelta1
optional matrix of conditional probabilities for missingness mechanism, \(n \times 2\) when Z is NULL \(P(Delta=1|A=0,W), P(Delta=1|A=1,W)\). \(n \times 4\) otherwise, \(P(Delta=1|Z=0,A=0,W), P(Delta=1|Z=0,A=1,W), P(Delta=1|Z=1,A=0,W), P(Delta=1|Z=1,A=1,W)\)
- g.Deltaform
optional regression formula of the form Delta~A+W, if specified this overrides the call to SuperLearner
- g.SL.library
optional vector of prediction algorithms to use for SuperLearner estimation of g1W
- g.Delta.SL.library
optional vector of prediction algorithms to use for SuperLearner estimation of pDelta1
- family
family specification for working regression models, generally ‘gaussian’ for continuous outcomes (default), ‘binomial’ for binary outcomes
- fluctuation
‘logistic’ (default), or ‘linear’
- alpha
used to keep predicted initial values bounded away from (0,1) for logistic fluctuation
- id
optional subject identifier
- V.Q
Number of cross-validation folds for super learner estimation of Q
- V.g
Number of cross-validation folds for super learner estimation of g
- V.Delta
Number of cross-validation folds for super learner estimation of missingness mechanism
- V.Z
Number of cross-validation folds for super learner estimation of intermediate variable
- verbose
status messages printed if set to TRUE (default=FALSE)
- Q.discreteSL
if TRUE, discreteSL is used instead of ensemble SL. Ignored when SL not used to estimate Q
- g.discreteSL
if TRUE, discreteSL is used instead of ensemble SL. Ignored when SL not used to estimate g1W
- g.Delta.discreteSL
if TRUE, discreteSL is used instead of ensemble SL. Ignored when SL not used to estimate P(Delta = 1 | A,W)
- prescreenW.g
Option to screen covariates before estimating g in order to retain only those associated with the outcome (Recommend FALSE in low dimensional datasets)
- min.retain
Minimum number of covariates to retain when prescreening covariates for g. NULL will set minimum number of covariates to retain for modeling treatment and missingness based on the number of treatment events. Ignored when prescreenW.g=FALSE
- target.gwt
When TRUE, move g from denominator of clever covariate to the weight when fitting epsilon. Default is FALSE.
- automate
When TRUE, all tuning parameters are set to their default values. Number of cross validation folds, truncation level for g, and
decision to prescreen covariates for modeling g are set data-adaptively based on sample size (see details).
- obsWeights
Optional observation weights to account for biased sampling
- alpha.sig
significance level for constructing 1-alpha.sig confidence intervals
- B
Number of boostrap iterations. Set \(B>1\) to obtain targeted bootstrap based inference in addition to IC-based inference (see Details).
- evalATT
Setting to FALSE speeds up computation by not evaluating the ATT and ATC parameters (useful when using the targeted bootstrap if neither of this are of interest).