DatNet.sWsA: R6 class for storing and managing the combined summary measures sW & sA from DatNet classes.
Description
This class inherits from DatNet and extends its methods to handle a single matrix dataset of
all summary measures (sA,sW)
The class DatNet.sWsA is the only way to access data in the entire package.
Contains methods for combining, subsetting, discretizing & binirizing summary measures (sW,sA).
For continous sVar this class provides methods for detecting / setting bin intervals,
normalization, disretization and construction of bin indicators.
The pointers to this class get passed on to SummariesModel functions: $fit(),
$predict() and $predictAeqa().
Methods
new(datnetW, datnetA, YnodeVals, det.Y, ...)- ...
addYnode(YnodeVals, det.Y)- ...
evalsubst(subsetexpr, subsetvars)- ...
get.dat.sWsA(rowsubset = TRUE, covars)- ...
get.outvar(rowsubset = TRUE, var)- ...
copy.sVar.types()- ...
bin.nms.sVar(name.sVar, nbins)- ...
pooled.bin.nm.sVar(name.sVar)- ...
detect.sVar.intrvls(name.sVar, nbins, bin_bymass, bin_bydhist, max_nperbin)- ...
detect.cat.sVar.levels(name.sVar)- ...
discretize.sVar(name.sVar, intervals)- ...
binirize.sVar(name.sVar, intervals, nbins, bin.nms)- ...
binirize.cat.sVar(name.sVar, levels)- ...
get.sVar.bw(name.sVar, intervals)- ...
get.sVar.bwdiff(name.sVar, intervals)- ...
make.dat.sWsA(p = 1, f.g_fun = NULL, sA.object = NULL)- ...
Active Bindings
dat.sWsA- ...
dat.bin.sVar- ...
emptydat.bin.sVar- ...
names.sWsA- ...
nobs- ...
noNA.Ynodevals- ...
nodes- ...
Details
datnetW - .
datnetA - .
active.bin.sVar - Currently discretized continous sVar column in data matrix mat.sVar.
mat.bin.sVar - Matrix of the binary indicators for discretized continuous covariate active.bin.sVar.
ord.sVar - Ordinal (categorical) transformation of a continous covariate sVar.
YnodeVals - .
det.Y - .
p - .