This function provides the joint density function for the truncated multivariate normal
distribution with mean equal to mean
and covariance matrix
sigma
, lower and upper truncation points lower
and upper
.
For convenience, it furthermore serves as a wrapper function for the one-dimensional and bivariate marginal densities
dtmvnorm.marginal()
and dtmvnorm.marginal2()
respectively when invoked with the margin
argument.
dtmvnorm(x, mean = rep(0, nrow(sigma)),
sigma = diag(length(mean)),
lower=rep(-Inf, length = length(mean)),
upper=rep( Inf, length = length(mean)),
log=FALSE,
margin=NULL)
Vector or matrix of quantiles. If x
is a matrix, each row is taken to be a quantile.
Mean vector, default is rep(0, nrow(sigma))
.
Covariance matrix, default is diag(length(mean))
.
Vector of lower truncation points,
default is rep(-Inf, length = length(mean))
.
Vector of upper truncation points,
default is rep( Inf, length = length(mean))
.
Logical; if TRUE
, densities d are given as log(d).
if NULL
then the joint density is computed (the default),
if MARGIN=1
then the one-dimensional marginal density in variate q
(q = 1..length(mean)
) is returned,
if MARGIN=c(q,r)
then the bivariate marginal density in variates q
and r
for q,r = 1..length(mean)
and
The computation of truncated multivariate normal probabilities and densities is done using conditional probabilities from the standard/untruncated multivariate normal distribution. So we refer to the documentation of the mvtnorm package and the methodology is described in Genz (1992, 1993).
Genz, A. (1992). Numerical computation of multivariate normal probabilities. Journal of Computational and Graphical Statistics, 1, 141--150
Genz, A. (1993). Comparison of methods for the computation of multivariate normal probabilities. Computing Science and Statistics, 25, 400--405
Johnson, N./Kotz, S. (1970). Distributions in Statistics: Continuous Multivariate Distributions Wiley & Sons, pp. 70--73
Horrace, W. (2005). Some Results on the Multivariate Truncated Normal Distribution. Journal of Multivariate Analysis, 94, 209--221
ptmvnorm
, pmvnorm
, rmvnorm
, dmvnorm
,
dtmvnorm.marginal
and dtmvnorm.marginal2
for marginal density functions
# NOT RUN {
dtmvnorm(x=c(0,0), mean=c(1,1), upper=c(0,0))
###########################################
#
# Example 1:
# truncated multivariate normal density
#
############################################
x1<-seq(-2, 3, by=0.1)
x2<-seq(-2, 3, by=0.1)
density<-function(x)
{
sigma=matrix(c(1, -0.5, -0.5, 1), 2, 2)
z=dtmvnorm(x, mean=c(0,0), sigma=sigma, lower=c(-1,-1))
z
}
fgrid <- function(x, y, f)
{
z <- matrix(nrow=length(x), ncol=length(y))
for(m in 1:length(x)){
for(n in 1:length(y)){
z[m,n] <- f(c(x[m], y[n]))
}
}
z
}
# compute density d for grid
d=fgrid(x1, x2, density)
# plot density as contourplot
contour(x1, x2, d, nlevels=5, main="Truncated Multivariate Normal Density",
xlab=expression(x[1]), ylab=expression(x[2]))
abline(v=-1, lty=3, lwd=2)
abline(h=-1, lty=3, lwd=2)
###########################################
#
# Example 2:
# generation of random numbers
# from a truncated multivariate normal distribution
#
############################################
sigma <- matrix(c(4,2,2,3), ncol=2)
x <- rtmvnorm(n=500, mean=c(1,2), sigma=sigma, upper=c(1,0))
plot(x, main="samples from truncated bivariate normal distribution",
xlim=c(-6,6), ylim=c(-6,6),
xlab=expression(x[1]), ylab=expression(x[2]))
abline(v=1, lty=3, lwd=2, col="gray")
abline(h=0, lty=3, lwd=2, col="gray")
# }
Run the code above in your browser using DataLab