This function identifies cliques of a specified size in a transition network.
It searches for cliques—complete subgraphs where every pair of nodes is
connected—of size n in the transition matrix for the specified cluster
in the tna object.
cliques(x, ...)# S3 method for tna
cliques(x, size = 2, threshold = 0, sum_weights = FALSE, ...)
# S3 method for group_tna
cliques(x, size = 2, threshold = 0, sum_weights = FALSE, ...)
A tna_cliques object which is a list of two elements:
weights is a matrix of the edge weights in the clique.
inits is a numeric vector of initial weights for the clique.
If x is a group_tna object, a group_tna_cliques object is returned
instead, which is a list or tna_cliques objects.
A tna or a group_tna object.
Ignored.
An integer specifying the size of the cliques to identify.
Defaults to 2 (dyads).
A numeric value that sets the minimum edge weight
for an edge to be considered in the clique. Edges below this value
are ignored. Defaults to 0.
A logical value specifying whether the sum of the
weights should be above the threshold instead of individual weights of the
directed edges. Defaults to FALSE.
Cluster-related functions
bootstrap(),
centralities(),
communities(),
deprune(),
estimate_cs(),
group_model(),
hist.group_tna(),
mmm_stats(),
plot.group_tna(),
plot.group_tna_centralities(),
plot.group_tna_cliques(),
plot.group_tna_communities(),
plot.group_tna_stability(),
plot_compare.group_tna(),
plot_mosaic.group_tna(),
plot_mosaic.tna_data(),
print.group_tna(),
print.group_tna_bootstrap(),
print.group_tna_centralities(),
print.group_tna_cliques(),
print.group_tna_communities(),
print.group_tna_stability(),
print.summary.group_tna(),
print.summary.group_tna_bootstrap(),
prune(),
pruning_details(),
rename_groups(),
reprune(),
summary.group_tna(),
summary.group_tna_bootstrap()
model <- tna(group_regulation)
# Find 2-cliques (dyads)
cliq <- cliques(model, size = 2)
Run the code above in your browser using DataLab