This function identifies cliques of a specified size in a transition network.
It searches for cliques—complete subgraphs where every pair of nodes is
connected—of size n
in the transition matrix for the specified cluster
in the tna
object.
cliques(x, ...)# S3 method for tna
cliques(x, size = 2, threshold = 0, sum_weights = FALSE, ...)
# S3 method for group_tna
cliques(x, size = 2, threshold = 0, sum_weights = FALSE, ...)
A tna_cliques
object which is a list
of two elements:
weights
is a matrix
of the edge weights in the clique.
inits
is a numeric
vector of initial weights for the clique.
If x
is a group_tna
object, a group_tna_cliques
object is returned
instead, which is a list
or tna_cliques
objects.
A tna
or a group_tna
object.
Ignored.
An integer
specifying the size of the cliques to identify.
Defaults to 2
(dyads).
A numeric
value that sets the minimum edge weight
for an edge to be considered in the clique. Edges below this value
are ignored. Defaults to 0
.
A logical
value specifying whether the sum of the
weights should be above the threshold
instead of individual weights of the
directed edges. Defaults to FALSE
.
Cluster-related functions
bootstrap()
,
centralities()
,
communities()
,
deprune()
,
estimate_cs()
,
group_model()
,
hist.group_tna()
,
mmm_stats()
,
plot.group_tna()
,
plot.group_tna_centralities()
,
plot.group_tna_cliques()
,
plot.group_tna_communities()
,
plot.group_tna_stability()
,
plot_compare.group_tna()
,
plot_mosaic.group_tna()
,
plot_mosaic.tna_data()
,
print.group_tna()
,
print.group_tna_bootstrap()
,
print.group_tna_centralities()
,
print.group_tna_cliques()
,
print.group_tna_communities()
,
print.group_tna_stability()
,
print.summary.group_tna()
,
print.summary.group_tna_bootstrap()
,
prune()
,
pruning_details()
,
rename_groups()
,
reprune()
,
summary.group_tna()
,
summary.group_tna_bootstrap()
model <- tna(group_regulation)
# Find 2-cliques (dyads)
cliq <- cliques(model, size = 2)
Run the code above in your browser using DataLab