tna
network based on transition probabilitiesPrunes a network represented by a tna
object by removing
edges based on a specified threshold, lowest percent of non-zero edge
weights, or the disparity filter algorithm (Serrano et al., 2009).
It ensures the network remains weakly connected.
Prunes a network represented by a tna
object by removing
edges based on a specified threshold, lowest percent of non-zero edge
weights, or the disparity filter algorithm (Serrano et al., 2009).
It ensures the network remains weakly connected.
prune(x, ...)# S3 method for tna
prune(
x,
method = "threshold",
threshold = 0.1,
lowest = 0.05,
level = 0.5,
boot = NULL,
...
)
# S3 method for group_tna
prune(x, ...)
A pruned tna
or group_tna
object. Details on the pruning can be
viewed with pruning_details()
. The original model can be restored with
deprune()
.
An object of class tna
or group_tna
Arguments passed to bootstrap()
when
using method = "bootstrap"
and when a tna_bootstrap
is not supplied.
A character
string describing the pruning method.
The available options are "threshold"
, "lowest"
, "bootstrap"
and
"disparity"
, corresponding to the methods listed in Details. The default
is "threshold"
.
A numeric value specifying the edge weight threshold. Edges with weights below or equal to this threshold will be considered for removal.
A numeric
value specifying the lowest percentage
of non-zero edges. This percentage of edges with the lowest weights will be
considered for removal. The default is 0.05
.
A numeric
value representing the significance level for the
disparity filter. Defaults to 0.5
.
A tna_bootstrap
object to be used for pruning with method
"boot"
. The method argument is ignored if this argument is supplied.
Evaluation and validation functions
bootstrap()
,
permutation_test()
,
pruning_details()
Evaluation and validation functions
bootstrap()
,
permutation_test()
,
pruning_details()
Cluster-related functions
bootstrap()
,
centralities()
,
cliques()
,
communities()
,
deprune()
,
estimate_cs()
,
group_model()
,
hist.group_tna()
,
mmm_stats()
,
plot.group_tna()
,
plot.group_tna_centralities()
,
plot.group_tna_cliques()
,
plot.group_tna_communities()
,
plot.group_tna_stability()
,
plot_compare.group_tna()
,
plot_mosaic.group_tna()
,
plot_mosaic.tna_data()
,
print.group_tna()
,
print.group_tna_bootstrap()
,
print.group_tna_centralities()
,
print.group_tna_cliques()
,
print.group_tna_communities()
,
print.group_tna_stability()
,
print.summary.group_tna()
,
print.summary.group_tna_bootstrap()
,
pruning_details()
,
rename_groups()
,
reprune()
,
summary.group_tna()
,
summary.group_tna_bootstrap()
model <- tna(group_regulation)
pruned_threshold <- prune(model, method = "threshold", threshold = 0.1)
pruned_percentile <- prune(model, method = "lowest", lowest = 0.05)
pruned_disparity <- prune(model, method = "disparity", level = 0.5)
Run the code above in your browser using DataLab