tna network based on transition probabilitiesPrunes a network represented by a tna object by removing
edges based on a specified threshold, lowest percent of non-zero edge
weights, or the disparity filter algorithm (Serrano et al., 2009).
It ensures the network remains weakly connected.
Prunes a network represented by a tna object by removing
edges based on a specified threshold, lowest percent of non-zero edge
weights, or the disparity filter algorithm (Serrano et al., 2009).
It ensures the network remains weakly connected.
prune(x, ...)# S3 method for tna
prune(
x,
method = "threshold",
threshold = 0.1,
lowest = 0.05,
level = 0.5,
boot = NULL,
...
)
# S3 method for group_tna
prune(x, ...)
A pruned tna or group_tna object. Details on the pruning can be
viewed with pruning_details(). The original model can be restored with
deprune().
An object of class tna or group_tna
Arguments passed to bootstrap() when
using method = "bootstrap" and when a tna_bootstrap is not supplied.
A character string describing the pruning method.
The available options are "threshold", "lowest", "bootstrap" and
"disparity", corresponding to the methods listed in Details. The default
is "threshold".
A numeric value specifying the edge weight threshold. Edges with weights below or equal to this threshold will be considered for removal.
A numeric value specifying the lowest percentage
of non-zero edges. This percentage of edges with the lowest weights will be
considered for removal. The default is 0.05.
A numeric value representing the significance level for the
disparity filter. Defaults to 0.5.
A tna_bootstrap object to be used for pruning with method
"boot". The method argument is ignored if this argument is supplied.
Evaluation and validation functions
bootstrap(),
permutation_test(),
pruning_details()
Evaluation and validation functions
bootstrap(),
permutation_test(),
pruning_details()
Cluster-related functions
bootstrap(),
centralities(),
cliques(),
communities(),
deprune(),
estimate_cs(),
group_model(),
hist.group_tna(),
mmm_stats(),
plot.group_tna(),
plot.group_tna_centralities(),
plot.group_tna_cliques(),
plot.group_tna_communities(),
plot.group_tna_stability(),
plot_compare.group_tna(),
plot_mosaic.group_tna(),
plot_mosaic.tna_data(),
print.group_tna(),
print.group_tna_bootstrap(),
print.group_tna_centralities(),
print.group_tna_cliques(),
print.group_tna_communities(),
print.group_tna_stability(),
print.summary.group_tna(),
print.summary.group_tna_bootstrap(),
pruning_details(),
rename_groups(),
reprune(),
summary.group_tna(),
summary.group_tna_bootstrap()
model <- tna(group_regulation)
pruned_threshold <- prune(model, method = "threshold", threshold = 0.1)
pruned_percentile <- prune(model, method = "lowest", lowest = 0.05)
pruned_disparity <- prune(model, method = "disparity", level = 0.5)
Run the code above in your browser using DataLab