Test edge weight differences between all pairs or a subset of pairs of
a group_tna
object. See permutation_test.tna()
for more details.
# S3 method for group_tna
permutation_test(
x,
groups,
adjust = "none",
iter = 1000,
paired = FALSE,
level = 0.05,
measures = character(0),
...
)
A group_tna
object
An integer
vector or a character
vector of group indices
or names, respectively, defining which groups to compare. When not provided,
all pairs are compared (the default).
A character
string for the method to adjust p-values with
for multiple comparisons. The default is "none"
for no adjustment.
See stats::p.adjust()
for details and available adjustment methods.
An integer
giving the number of permutations to perform.
The default is 1000.
A logical
value. If TRUE
, perform paired permutation tests;
if FALSE
, perform unpaired tests. The default is FALSE
.
A numeric
value giving the significance level for the
permutation tests. The default is 0.05.
A character
vector of centrality measures to test.
See centralities()
for a list of available centrality measures.
Additional arguments passed to centralities()
.
Validation functions
bootstrap()
,
deprune()
,
estimate_cs()
,
permutation_test()
,
plot.group_tna_bootstrap()
,
plot.group_tna_permutation()
,
plot.group_tna_stability()
,
plot.tna_bootstrap()
,
plot.tna_permutation()
,
plot.tna_stability()
,
print.group_tna_bootstrap()
,
print.group_tna_permutation()
,
print.group_tna_stability()
,
print.summary.group_tna_bootstrap()
,
print.summary.tna_bootstrap()
,
print.tna_bootstrap()
,
print.tna_permutation()
,
print.tna_stability()
,
prune()
,
pruning_details()
,
reprune()
,
summary.group_tna_bootstrap()
,
summary.tna_bootstrap()
model <- group_model(engagement_mmm)
# Small number of iterations for CRAN
permutation_test(model, iter = 20)
Run the code above in your browser using DataLab