Plots a transition network of each cluster using qgraph
.
# S3 method for group_tna
plot(x, title, which, ...)
NULL
(invisibly).
A group_model
object.
A title for each plot. It can be a single string (the same one will be used for all plots) or a list (one per group)
An optional integer
vector of groups to plot. By default, all
groups are plotted.
Arguments passed on to plot.tna
labels
See qgraph::qgraph()
.
colors
See qgraph::qgraph()
.
pie
See qgraph::qgraph()
.
cut
Edge color and width emphasis cutoff value. The default is
the median of the edge weights. See qgraph::qgraph()
for details.
show_pruned
A logical
value indicating if pruned edges removed by
prune()
should be shown in the plot. The default is TRUE
, and the
edges are drawn as dashed with a different color to distinguish them.
pruned_edge_color
A character
string for the color to use for
pruned edges when show_pruned = TRUE
. The default is "pink"
.
edge.color
See qgraph::qgraph()
.
edge.labels
See qgraph::qgraph()
.
edge.label.position
See qgraph::qgraph()
.
layout
One of the following:
A character
string describing a qgraph
layout (e.g., "circle"
)
or the name of a igraph
layout function (e.g., "layout_on_grid"
).
A matrix
of node positions to use, with a row for each node and
x
and y
columns for the node positions.
A layout function from igraph
.
layout_args
A list
of arguments to pass to the igraph
layout
function when layout
is a function or a character string that specifies
a function name.
scale_nodes
A character
string giving the name of a centrality
measure to scale the node size by. See centralities()
for valid names.
If missing (the default), uses default qgraph::qgraph()
scaling.
Overrides vsize
provided via ...
.
scaling_factor
A numeric
value specifying how strongly to scale
the nodes when scale_nodes
is provided. Values
between 0 and 1 will result in smaller differences and values larger
than 1 will result in greater differences. The default is 0.5
.
mar
See qgraph::qgraph()
.
theme
See qgraph::qgraph()
.
Basic functions
build_model()
,
hist.group_tna()
,
hist.tna()
,
plot.tna()
,
plot_frequencies()
,
plot_frequencies.group_tna()
,
plot_mosaic()
,
plot_mosaic.group_tna()
,
plot_mosaic.tna_data()
,
print.group_tna()
,
print.summary.group_tna()
,
print.summary.tna()
,
print.tna()
,
summary.group_tna()
,
summary.tna()
,
tna-package
model <- group_model(engagement_mmm)
plot(model)
Run the code above in your browser using DataLab