Test edge weight differences between all pairs or a subset of pairs of
a group_tna object. See permutation_test.tna() for more details.
# S3 method for group_tna
permutation_test(
x,
groups,
adjust = "none",
iter = 1000,
paired = FALSE,
level = 0.05,
measures = character(0),
consecutive = FALSE,
...
)A group_tna object
An integer vector or a character vector of group indices
or names, respectively, defining which groups to compare. When not provided,
all pairs are compared (the default).
A character string for the method to adjust p-values with
for multiple comparisons. The default is "none" for no adjustment.
See the method argument of stats::p.adjust() for details and available
adjustment methods.
An integer giving the number of permutations to perform.
The default is 1000.
A logical value. If TRUE, perform paired permutation tests;
if FALSE, perform unpaired tests. The default is FALSE.
A numeric value giving the significance level for the
permutation tests. The default is 0.05.
A character vector of centrality measures to test.
See centralities() for a list of available centrality measures.
A logical value. If FALSE (the default), all pairwise
comparisons are performed in lexicographic order with respect to the order
of the groups. If TRUE, only comparisons between consecutive pairs
of groups are performed.
Additional arguments passed to centralities().
Validation functions
bootstrap(),
deprune(),
estimate_cs(),
permutation_test(),
plot.group_tna_bootstrap(),
plot.group_tna_permutation(),
plot.group_tna_stability(),
plot.tna_bootstrap(),
plot.tna_permutation(),
plot.tna_reliability(),
plot.tna_stability(),
print.group_tna_bootstrap(),
print.group_tna_permutation(),
print.group_tna_stability(),
print.summary.group_tna_bootstrap(),
print.summary.tna_bootstrap(),
print.tna_bootstrap(),
print.tna_clustering(),
print.tna_permutation(),
print.tna_reliability(),
print.tna_stability(),
prune(),
pruning_details(),
reliability(),
reprune(),
summary.group_tna_bootstrap(),
summary.tna_bootstrap()
model <- group_model(engagement_mmm)
# Small number of iterations for CRAN
permutation_test(model, iter = 20)
Run the code above in your browser using DataLab