Learn R Programming

toaster (version 0.5.5)

computeGraphMetric: Compute top vertices by the metric values on a graph.

Description

Compute top vertices by the metric values on a graph.

Usage

computeGraphMetric(channel, graph, type = "degree", top = 10, rankFunction = "rank", weight = FALSE, vertexWhere = graph$vertexWhere, edgeWhere = graph$edgeWhere, keyAsFactor = TRUE, allTables = NULL, test = FALSE, ...)

Arguments

channel
connection object as returned by odbcConnect
graph
an object of class 'toagraph' referencing graph tables in Aster database.
type
choose between graph metrics to compute: 'degree', 'in-degree', 'out-degree', 'clustering', 'shortestpath', 'pagerank', 'betweenness', 'eigenvector', 'closeness', 'avg-closeness', 'k-degree', 'alt-closeness'.
top
the number of vertices to return. If top >= 0 then top vertices sorted by the metric value are returned, otherwise all vertices are returned. Returned vertices are ordered by the computed graph metric only when top >= 0.
rankFunction
one of rownumber, rank, denserank, percentrank. Rank computed and returned for each vertex and each metric type. rankFunction determines which SQL window function computes vertex rank value (default rank corresponds to SQL RANK() window function). When threshold top is greater than 0 ranking function used to limit number of vertices returned (see details).
weight
logical or character: if logical then TRUE indicates using 'weight' edge attribute, otherwise no weight used. If character then use as a name for the edge weight attribute. The edge weight may apply with types 'clustering', 'shortestpath' and centrality measures.
vertexWhere
SQL WHERE clause limiting data from the vertex table. This value when not null overrides corresponding value vertexWhere from graph (use SQL as if in WHERE clause but omit keyword WHERE).
edgeWhere
SQL WHERE clause limiting data from the edge table. This value when not null overrides corresponding value edgeWhere from graph (use SQL as if in WHERE clause but omit keyword WHERE).
keyAsFactor
logical: should key column be converted to factor? If TRUE then conversion will always take place for any of integer, numeric, or character data types.
allTables
pre-built information about existing tables.
test
logical: if TRUE show what would be done, only (similar to parameter test in RODBC functions: sqlQuery and sqlSave).
...
other arguments passed on to Aster graph functions except for EDGEWEIGHT argument - use argument weight instead. Aster function areguments are not case-sensetive.

Value

dataframe containing one vertice per row with key value, computed metric value, and its rank using rankFunction.

Examples

Run this code
if(interactive()) {
library(ggplot2)

policeGraphUn = toaGraph("dallaspolice_officer_vertices", "dallaspolice_officer_edges_un", 
                         directed = FALSE, key = "officer", 
                         source = "officer1", target = "officer2", 
                         vertexAttrnames = c("offense_count"), edgeAttrnames = c("weight"))
               
# initialize connection to Lahman baseball database in Aster 
conn = odbcDriverConnect(connection="driver={Aster ODBC Driver};
                         server=<dbhost>;port=2406;database=<dbname>;uid=<user>;pwd=<pw>")
                         
createTopMetricPlot <- function(data, metric, xlab='Officer', ylab='Degree', title) {
   p = ggplot(data) +
       geom_bar(aes_string("key", metric, fill="key"), stat='identity') +
       labs(x=xlab,y=ylab,title=title) +
       ggthemes::theme_tufte() + 
       theme(legend.position='none', 
             axis.text.x = element_text(size=16, angle = 315, vjust = 1), 
             plot.title = element_text(size=20),
             axis.ticks = element_blank())
   
   return(p)
}

# top degree officers
topDegree = computeGraphMetric(conn, policeGraphUn, type="degree", top=30)
createTopMetricPlot(topDegree, 'degree', ylab='Degree', title='Top 30 Officers by Degree') 

# top betweenness officers
topbetweenness = computeGraphMetric(conn, policeGraphUn, type='betweenness', top=25)
createTopMetricPlot(topbetweenness, 'betweenness', ylab='Betweenness', 
                    title='Top 25 Officers (Betweenness)')                     
                         
}

Run the code above in your browser using DataLab