Density, distribution function, quantile function, and random generation for the 2-parameter
exponential distribution with rate equal to rate
and shift equal to shift
.
d2exp(x, rate = 1, shift = 0, log = FALSE)
p2exp(q, rate = 1, shift = 0, lower.tail = TRUE, log.p = FALSE)
q2exp(p, rate = 1, shift = 0, lower.tail = TRUE, log.p = FALSE)
r2exp(n, rate = 1, shift = 0)
d2exp
gives the density, p2exp
gives the distribution function, q2exp
gives the quantile
function, and r2exp
generates random deviates.
Vector of quantiles.
Vector of probabilities.
The number of observations. If length>1
, then the length is taken to be the number required.
Vector of rates.
Vector of shifts.
Logical vectors. If TRUE
, then probabilities are given as log(p)
.
Logical vector. If TRUE
, then probabilities are
If rate
or shift
are not specified, then they assume the default values of 1 and 0, respectively.
The 2-parameter exponential distribution has density
runif
and .Random.seed
about random number generation.
## Randomly generated data from the 2-parameter exponential
## distribution.
set.seed(100)
x <- r2exp(n = 500, rate = 3, shift = -10)
hist(x, main = "Randomly Generated Data", prob = TRUE)
x.1 = sort(x)
y <- d2exp(x = x.1, rate = 3, shift = -10)
lines(x.1, y, col = 2, lwd = 2)
plot(x.1, p2exp(q = x.1, rate = 3, shift = -10), type = "l",
xlab = "x", ylab = "Cumulative Probabilities")
q2exp(p = 0.20, rate = 3, shift = -10, lower.tail = FALSE)
q2exp(p = 0.80, rate = 3, shift = -10)
Run the code above in your browser using DataLab