# Example 1: Basic usage with small matrix
test_data <- data.frame(
object = rep(paste0("Obj", 1:4), each = 4),
reference = rep(paste0("Ref", 1:4), 4),
score = sample(c(1, 2, 4, 8, 16, 32, 64, "<1", ">12"), 16, replace = TRUE)
)
dist_mat <- list_to_matrix(
data = test_data, # Pass the data frame, not file path
object_col = "object",
reference_col = "reference",
value_col = "score",
is_similarity = TRUE
)
if (FALSE) {
# Note: output_dir is required for actual use
result <- Euclidify(
dissimilarity_matrix = dist_mat,
output_dir = tempdir() # Use temp directory for example
)
coordinates <- result$positions
}
# Example 2: Using custom parameter ranges
if (FALSE) {
result <- Euclidify(
dissimilarity_matrix = dist_mat,
output_dir = tempdir(),
n_initial_samples = 10,
n_adaptive_samples = 7,
verbose = "off"
)
}
# Example 3: Handling missing data
dist_mat_missing <- dist_mat
dist_mat_missing[1, 3] <- dist_mat_missing[3, 1] <- NA
if (FALSE) {
result <- Euclidify(
dissimilarity_matrix = dist_mat_missing,
output_dir = tempdir(),
n_initial_samples = 10,
n_adaptive_samples = 7,
verbose = "off"
)
}
# Example 4: Using threshold indicators
dist_mat_threshold <- dist_mat
dist_mat_threshold[1, 2] <- ">2"
dist_mat_threshold[2, 1] <- ">2"
if (FALSE) {
result <- Euclidify(
dissimilarity_matrix = dist_mat_threshold,
output_dir = tempdir(),
n_initial_samples = 10,
n_adaptive_samples = 7,
verbose = "off"
)
}
# Example 5: Parallel processing with custom cores
if (FALSE) {
result <- Euclidify(
dissimilarity_matrix = dist_mat,
output_dir = tempdir(),
max_cores = 4,
n_adaptive_samples = 100,
save_results = TRUE # Save positions to CSV
)
}
Run the code above in your browser using DataLab