Creates a criterion that measures the loss given
inputs Tensors
,
and a label 1D mini-batch tensor
nn_margin_ranking_loss(margin = 0, reduction = "mean")
(float, optional): Has a default value of
(string, optional): Specifies the reduction to apply to the output:
'none'
| 'mean'
| 'sum'
. 'none'
: no reduction will be applied,
'mean'
: the sum of the output will be divided by the number of
elements in the output, 'sum'
: the output will be summed. Note: size_average
and reduce
are in the process of being deprecated, and in the meantime,
specifying either of those two args will override reduction
. Default: 'mean'
Input1: N
is the batch size.
Input2:
Target:
Output: scalar. If reduction
is 'none'
, then
The loss function for each pair of samples in the mini-batch is:
# NOT RUN {
if (torch_is_installed()) {
loss <- nn_margin_ranking_loss()
input1 <- torch_randn(3, requires_grad=TRUE)
input2 <- torch_randn(3, requires_grad=TRUE)
target <- torch_randn(3)$sign()
output <- loss(input1, input2, target)
output$backward()
}
# }
Run the code above in your browser using DataLab