Randperm
torch_randperm(
n,
dtype = torch_int64(),
layout = torch_strided(),
device = NULL,
requires_grad = FALSE
)
(int) the upper bound (exclusive)
(torch.dtype
, optional) the desired data type of returned tensor. Default: torch_int64
.
(torch.layout
, optional) the desired layout of returned Tensor. Default: torch_strided
.
(torch.device
, optional) the desired device of returned tensor. Default: if NULL
, uses the current device for the default tensor type (see torch_set_default_tensor_type
). device
will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.
(bool, optional) If autograd should record operations on the returned tensor. Default: FALSE
.
Returns a random permutation of integers from 0
to n - 1
.
# NOT RUN {
if (torch_is_installed()) {
torch_randperm(4)
}
# }
Run the code above in your browser using DataLab