Unlimited learning, half price | 50% off

Last chance! 50% off unlimited learning

Sale ends in


torch (version 0.13.0)

nn_max_pool1d: MaxPool1D module

Description

Applies a 1D max pooling over an input signal composed of several input planes.

Usage

nn_max_pool1d(
  kernel_size,
  stride = NULL,
  padding = 0,
  dilation = 1,
  return_indices = FALSE,
  ceil_mode = FALSE
)

Arguments

kernel_size

the size of the window to take a max over

stride

the stride of the window. Default value is kernel_size

padding

implicit zero padding to be added on both sides

dilation

a parameter that controls the stride of elements in the window

return_indices

if TRUE, will return the max indices along with the outputs. Useful for nn_max_unpool1d() later.

ceil_mode

when TRUE, will use ceil instead of floor to compute the output shape

Shape

  • Input: (N,C,Lin)

  • Output: (N,C,Lout), where

Lout=Lin+2×paddingdilation×(kernel\_size1)1stride+1

Details

In the simplest case, the output value of the layer with input size (N,C,L) and output (N,C,Lout) can be precisely described as:

out(Ni,Cj,k)=maxm=0,,kernel\_size1input(Ni,Cj,stride×k+m)

If padding is non-zero, then the input is implicitly zero-padded on both sides for padding number of points. dilation controls the spacing between the kernel points. It is harder to describe, but this link has a nice visualization of what dilation does.

Examples

Run this code
if (torch_is_installed()) {
# pool of size=3, stride=2
m <- nn_max_pool1d(3, stride = 2)
input <- torch_randn(20, 16, 50)
output <- m(input)
}

Run the code above in your browser using DataLab