Calculates loss between a continuous (unsegmented) time series and a target sequence. CTCLoss sums over the
probability of possible alignments of input to target, producing a loss value which is differentiable
with respect to each input node. The alignment of input to target is assumed to be "many-to-one", which
limits the length of the target sequence such that it must be
nn_ctc_loss(blank = 0, reduction = "mean", zero_infinity = FALSE)
(int, optional): blank label. Default
(string, optional): Specifies the reduction to apply to the output:
'none'
| 'mean'
| 'sum'
. 'none'
: no reduction will be applied,
'mean'
: the output losses will be divided by the target lengths and
then the mean over the batch is taken. Default: 'mean'
(bool, optional):
Whether to zero infinite losses and the associated gradients.
Default: FALSE
Infinite losses mainly occur when the inputs are too short
to be aligned to the targets.
Log_probs: Tensor of size
Targets: Tensor of size
Input_lengths: Tuple or tensor of size
Target_lengths: Tuple or tensor of size target_n = targets[n,0:s_n]
for
each target in a batch. Lengths must each be
Output: scalar. If reduction
is 'none'
, then
[nnf)log_softmax()]: R:nnf)log_softmax() [n,0:s_n]: R:n,0:s_n
A. Graves et al.: Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks: https://www.cs.toronto.edu/~graves/icml_2006.pdf
if (torch_is_installed()) {
# Target are to be padded
T <- 50 # Input sequence length
C <- 20 # Number of classes (including blank)
N <- 16 # Batch size
S <- 30 # Target sequence length of longest target in batch (padding length)
S_min <- 10 # Minimum target length, for demonstration purposes
# Initialize random batch of input vectors, for *size = (T,N,C)
input <- torch_randn(T, N, C)$log_softmax(2)$detach()$requires_grad_()
# Initialize random batch of targets (0 = blank, 1:C = classes)
target <- torch_randint(low = 1, high = C, size = c(N, S), dtype = torch_long())
input_lengths <- torch_full(size = c(N), fill_value = TRUE, dtype = torch_long())
target_lengths <- torch_randint(low = S_min, high = S, size = c(N), dtype = torch_long())
ctc_loss <- nn_ctc_loss()
loss <- ctc_loss(input, target, input_lengths, target_lengths)
loss$backward()
# Target are to be un-padded
T <- 50 # Input sequence length
C <- 20 # Number of classes (including blank)
N <- 16 # Batch size
# Initialize random batch of input vectors, for *size = (T,N,C)
input <- torch_randn(T, N, C)$log_softmax(2)$detach()$requires_grad_()
input_lengths <- torch_full(size = c(N), fill_value = TRUE, dtype = torch_long())
# Initialize random batch of targets (0 = blank, 1:C = classes)
target_lengths <- torch_randint(low = 1, high = T, size = c(N), dtype = torch_long())
target <- torch_randint(
low = 1, high = C, size = as.integer(sum(target_lengths)),
dtype = torch_long()
)
ctc_loss <- nn_ctc_loss()
loss <- ctc_loss(input, target, input_lengths, target_lengths)
loss$backward()
}
Run the code above in your browser using DataLab