Quantize_per_channel
torch_quantize_per_channel(self, scales, zero_points, axis, dtype)
(Tensor) float tensor to quantize
(Tensor) float 1D tensor of scales to use, size should match input.size(axis)
(int) integer 1D tensor of offset to use, size should match input.size(axis)
(int) dimension on which apply per-channel quantization
(torch.dtype
) the desired data type of returned tensor. Has to be one of the quantized dtypes: torch_quint8
, torch.qint8
, torch.qint32
Converts a float tensor to per-channel quantized tensor with given scales and zero points.
if (torch_is_installed()) {
x = torch_tensor(matrix(c(-1.0, 0.0, 1.0, 2.0), ncol = 2, byrow = TRUE))
torch_quantize_per_channel(x, torch_tensor(c(0.1, 0.01)),
torch_tensor(c(10L, 0L)), 0, torch_quint8())
torch_quantize_per_channel(x, torch_tensor(c(0.1, 0.01)),
torch_tensor(c(10L, 0L)), 0, torch_quint8())$int_repr()
}
Run the code above in your browser using DataLab