Unlimited learning, half price | 50% off

Last chance! 50% off unlimited learning

Sale ends in


torch (version 0.3.0)

nn_max_pool3d: Applies a 3D max pooling over an input signal composed of several input planes.

Description

In the simplest case, the output value of the layer with input size (N,C,D,H,W), output (N,C,Dout,Hout,Wout) and kernel_size (kD,kH,kW) can be precisely described as:

Usage

nn_max_pool3d(
  kernel_size,
  stride = NULL,
  padding = 0,
  dilation = 1,
  return_indices = FALSE,
  ceil_mode = FALSE
)

Arguments

kernel_size

the size of the window to take a max over

stride

the stride of the window. Default value is kernel_size

padding

implicit zero padding to be added on all three sides

dilation

a parameter that controls the stride of elements in the window

return_indices

if TRUE, will return the max indices along with the outputs. Useful for torch_nn.MaxUnpool3d later

ceil_mode

when TRUE, will use ceil instead of floor to compute the output shape

Shape

  • Input: (N,C,Din,Hin,Win)

  • Output: (N,C,Dout,Hout,Wout), where Dout=Din+2×padding[0]dilation[0]×(kernel\_size[0]1)1stride[0]+1

Hout=Hin+2×padding[1]dilation[1]×(kernel\_size[1]1)1stride[1]+1

Wout=Win+2×padding[2]dilation[2]×(kernel\_size[2]1)1stride[2]+1

Details

out(Ni,Cj,d,h,w)=maxk=0,,kD1maxm=0,,kH1maxn=0,,kW1input(Ni,Cj,stride[0]×d+k,stride[1]×h+m,stride[2]×w+n)

If padding is non-zero, then the input is implicitly zero-padded on both sides for padding number of points. dilation controls the spacing between the kernel points. It is harder to describe, but this link_ has a nice visualization of what dilation does. The parameters kernel_size, stride, padding, dilation can either be:

  • a single int -- in which case the same value is used for the depth, height and width dimension

  • a tuple of three ints -- in which case, the first int is used for the depth dimension, the second int for the height dimension and the third int for the width dimension

Examples

Run this code
# NOT RUN {
if (torch_is_installed()) {
# pool of square window of size=3, stride=2
m <- nn_max_pool3d(3, stride=2)
# pool of non-square window
m <- nn_max_pool3d(c(3, 2, 2), stride=c(2, 1, 2))
input <- torch_randn(20, 16, 50,44, 31)
output <- m(input)

}
# }

Run the code above in your browser using DataLab