
Sets the learning rate of each parameter group to the initial lr times a given function. When last_epoch=-1, sets initial lr as lr.
lr_lambda(optimizer, lr_lambda, last_epoch = -1, verbose = FALSE)
(Optimizer): Wrapped optimizer.
(function or list): A function which computes a multiplicative factor given an integer parameter epoch, or a list of such functions, one for each group in optimizer.param_groups.
(int): The index of last epoch. Default: -1.
(bool): If TRUE
, prints a message to stdout for
each update. Default: FALSE
.
if (torch_is_installed()) {
# Assuming optimizer has two groups.
lambda1 <- function(epoch) epoch %/% 30
lambda2 <- function(epoch) 0.95^epoch
if (FALSE) {
scheduler <- lr_lambda(optimizer, lr_lambda = list(lambda1, lambda2))
for (epoch in 1:100) {
train(...)
validate(...)
scheduler$step()
}
}
}
Run the code above in your browser using DataLab