
Arange
torch_arange(
start,
end,
step = 1,
dtype = NULL,
layout = torch_strided(),
device = NULL,
requires_grad = FALSE
)
(Number) the starting value for the set of points. Default: 0
.
(Number) the ending value for the set of points
(Number) the gap between each pair of adjacent points. Default: 1
.
(torch.dtype
, optional) the desired data type of returned tensor. Default: if NULL
, uses a global default (see torch_set_default_tensor_type
). If dtype
is not given, infer the data type from the other input arguments. If any of start
, end
, or stop
are floating-point, the dtype
is inferred to be the default dtype, see ~torch.get_default_dtype
. Otherwise, the dtype
is inferred to be torch.int64
.
(torch.layout
, optional) the desired layout of returned Tensor. Default: torch_strided
.
(torch.device
, optional) the desired device of returned tensor. Default: if NULL
, uses the current device for the default tensor type (see torch_set_default_tensor_type
). device
will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.
(bool, optional) If autograd should record operations on the returned tensor. Default: FALSE
.
Returns a 1-D tensor of size [start, end)
taken with common difference
step
beginning from start
.
Note that non-integer step
is subject to floating point rounding errors when
comparing against end
; to avoid inconsistency, we advise adding a small epsilon to end
in such cases.
if (torch_is_installed()) {
torch_arange(start = 0, end = 5)
torch_arange(1, 4)
torch_arange(1, 2.5, 0.5)
}
Run the code above in your browser using DataLab