
Rand
torch_rand(
...,
names = NULL,
dtype = NULL,
layout = torch_strided(),
device = NULL,
requires_grad = FALSE
)
(int...) a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple.
optional dimension names
(torch.dtype
, optional) the desired data type of returned tensor. Default: if NULL
, uses a global default (see torch_set_default_tensor_type
).
(torch.layout
, optional) the desired layout of returned Tensor. Default: torch_strided
.
(torch.device
, optional) the desired device of returned tensor. Default: if NULL
, uses the current device for the default tensor type (see torch_set_default_tensor_type
). device
will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.
(bool, optional) If autograd should record operations on the returned tensor. Default: FALSE
.
Returns a tensor filled with random numbers from a uniform distribution
on the interval
The shape of the tensor is defined by the variable argument size
.
if (torch_is_installed()) {
torch_rand(4)
torch_rand(c(2, 3))
}
Run the code above in your browser using DataLab