Usage
torch_randperm(
  n,
  dtype = torch_int64(),
  layout = torch_strided(),
  device = NULL,
  requires_grad = FALSE
)
Arguments
- n
 
(int) the upper bound (exclusive)
- dtype
 
(torch.dtype, optional) the desired data type of returned tensor.        Default: torch_int64.
- layout
 
(torch.layout, optional) the desired layout of returned Tensor.        Default: torch_strided.
- device
 
(torch.device, optional) the desired device of returned tensor.        Default: if NULL, uses the current device for the default tensor type        (see torch_set_default_tensor_type). device will be the CPU        for CPU tensor types and the current CUDA device for CUDA tensor types.
- requires_grad
 
(bool, optional) If autograd should record operations on the        returned tensor. Default: FALSE.
randperm(n, out=NULL, dtype=torch.int64, layout=torch.strided, device=NULL, requires_grad=False) -> LongTensor 
Returns a random permutation of integers from 0 to n - 1.
Examples
Run this codeif (torch_is_installed()) {
torch_randperm(4)
}
Run the code above in your browser using DataLab