Usage
torch_zeros(
  ...,
  names = NULL,
  dtype = NULL,
  layout = torch_strided(),
  device = NULL,
  requires_grad = FALSE
)
Arguments
- ...
 
a sequence of integers defining the shape of the output tensor.        Can be a variable number of arguments or a collection like a list or tuple.
- names
 
optional dimension names
- dtype
 
(torch.dtype, optional) the desired data type of returned tensor.        Default: if NULL, uses a global default (see torch_set_default_tensor_type).
- layout
 
(torch.layout, optional) the desired layout of returned Tensor.        Default: torch_strided.
- device
 
(torch.device, optional) the desired device of returned tensor.        Default: if NULL, uses the current device for the default tensor type        (see torch_set_default_tensor_type). device will be the CPU        for CPU tensor types and the current CUDA device for CUDA tensor types.
- requires_grad
 
(bool, optional) If autograd should record operations on the        returned tensor. Default: FALSE.
zeros(*size, out=NULL, dtype=NULL, layout=torch.strided, device=NULL, requires_grad=False) -> Tensor 
Returns a tensor filled with the scalar value 0, with the shape defined
by the variable argument size.
Examples
Run this codeif (torch_is_installed()) {
torch_zeros(c(2, 3))
torch_zeros(c(5))
}
Run the code above in your browser using DataLab