
Last chance! 50% off unlimited learning
Sale ends in
Full
torch_full(
size,
fill_value,
names = NULL,
dtype = NULL,
layout = torch_strided(),
device = NULL,
requires_grad = FALSE
)
(int...) a list, tuple, or torch_Size
of integers defining the shape of the output tensor.
NA the number to fill the output tensor with.
optional names of the dimensions
(torch.dtype
, optional) the desired data type of returned tensor. Default: if NULL
, uses a global default (see torch_set_default_tensor_type
).
(torch.layout
, optional) the desired layout of returned Tensor. Default: torch_strided
.
(torch.device
, optional) the desired device of returned tensor. Default: if NULL
, uses the current device for the default tensor type (see torch_set_default_tensor_type
). device
will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.
(bool, optional) If autograd should record operations on the returned tensor. Default: FALSE
.
Returns a tensor of size size
filled with fill_value
.
In PyTorch 1.5 a bool or integral fill_value
will produce a warning if
dtype
or out
are not set.
In a future PyTorch release, when dtype
and out
are not set
a bool fill_value
will return a tensor of torch.bool dtype,
and an integral fill_value
will return a tensor of torch.long dtype.
if (torch_is_installed()) {
torch_full(list(2, 3), 3.141592)
}
Run the code above in your browser using DataLab