powered by
MelResNet layer uses a stack of ResBlocks on spectrogram. Pass the input through the MelResNet layer.
model_melresnet( n_res_block = 10, n_freq = 128, n_hidden = 128, n_output = 128, kernel_size = 5 )
Tensor shape: (n_batch, n_output, n_time - kernel_size + 1)
the number of ResBlock in stack. (Default: 10)
10
the number of bins in a spectrogram. (Default: 128)
128
the number of hidden dimensions of resblock. (Default: 128)
the number of output dimensions of melresnet. (Default: 128)
the number of kernel size in the first Conv1d layer. (Default: 5)
5
forward param: specgram (Tensor): the input sequence to the MelResNet layer (n_batch, n_freq, n_time).
if(torch::torch_is_installed()) { melresnet = model_melresnet() input = torch::torch_rand(10, 128, 512) # a random spectrogram output = melresnet(input) # shape: (10, 128, 508) }
Run the code above in your browser using DataLab