if (FALSE) {
# Example usage of PNet
model_pnet <- model_facenet_pnet(pretrained = TRUE)
model_pnet$eval()
input_pnet <- torch_randn(1, 3, 224, 224)
output_pnet <- model_pnet(input_pnet)
output_pnet
# Example usage of RNet
model_rnet <- model_facenet_rnet(pretrained = TRUE)
model_rnet$eval()
input_rnet <- torch_randn(1, 3, 24, 24)
output_rnet <- model_rnet(input_rnet)
output_rnet
# Example usage of ONet
model_onet <- model_facenet_onet(pretrained = TRUE)
model_onet$eval()
input_onet <- torch_randn(1, 3, 48, 48)
output_onet <- model_onet(input_onet)
output_onet
# Example usage of MTCNN
mtcnn <- model_mtcnn(pretrained = TRUE)
mtcnn$eval()
image_tensor <- torch_randn(c(1, 3, 224, 224))
out <- mtcnn(image_tensor)
out
# Load an image from the web
wmc <- "https://upload.wikimedia.org/wikipedia/commons/"
url <- "b/b4/Catherine_Bell_200101233d_hr_%28cropped%29.jpg"
img <- base_loader(paste0(wmc,url))
# Convert to torch tensor [C, H, W] normalized
input <- transform_to_tensor(img) # [C, H, W]
batch <- input$unsqueeze(1) # [1, C, H, W]
# Load pretrained model
model <- model_facenet_inception_resnet_v1(pretrained = "vggface2")
model$eval()
output <- model(batch)
output
# Example usage of Inception-ResNet-v1 with CASIA-Webface Weights
model <- model_facenet_inception_resnet_v1(pretrained = "casia-webface")
model$eval()
output <- model(batch)
output
}
Run the code above in your browser using DataLab