Track numerical optimization
The {trackopt} package tracks parameter values, gradients, and
Hessians at each iteration of numerical optimizers in R. This can be
useful for analyzing optimization progress, diagnosing issues, and
studying convergence behavior.
Installation
You can install the released package version from CRAN with:
install.packages("trackopt")Example
The following is the nlm minimization track of the Himmelblau’s
function:
library("trackopt")
himmelblau <- function(x) (x[1]^2 + x[2] - 11)^2 + (x[1] + x[2]^2 - 7)^2
track <- nlm_track(f = himmelblau, p = c(0, 0))
print(track)
#> # A tibble: 17 × 7
#> iteration value step parameter gradient hessian seconds
#> * <dbl> <dbl> <dbl> <list> <list> <list> <dbl>
#> 1 0 170 0 <dbl [2]> <dbl [1]> <dbl [1]> 0
#> 2 1 47.4 -1.23e+2 <dbl [2]> <dbl [2]> <dbl [2 × 2]> 0.0247
#> 3 2 14.0 -3.34e+1 <dbl [2]> <dbl [2]> <dbl [2 × 2]> 0.00119
#> 4 3 4.91 -9.08e+0 <dbl [2]> <dbl [2]> <dbl [2 × 2]> 0.00122
#> 5 4 2.26 -2.65e+0 <dbl [2]> <dbl [2]> <dbl [2 × 2]> 0.00127
#> 6 5 0.951 -1.31e+0 <dbl [2]> <dbl [2]> <dbl [2 × 2]> 0.00110
#> 7 6 0.272 -6.79e-1 <dbl [2]> <dbl [2]> <dbl [2 × 2]> 0.00102
#> 8 7 0.0650 -2.07e-1 <dbl [2]> <dbl [2]> <dbl [2 × 2]> 0.000993
#> 9 8 0.0168 -4.82e-2 <dbl [2]> <dbl [2]> <dbl [2 × 2]> 0.000989
#> 10 9 0.00400 -1.28e-2 <dbl [2]> <dbl [2]> <dbl [2 × 2]> 0.000997
#> 11 10 0.000948 -3.06e-3 <dbl [2]> <dbl [2]> <dbl [2 × 2]> 0.000997
#> 12 11 0.000221 -7.28e-4 <dbl [2]> <dbl [2]> <dbl [2 × 2]> 0.00100
#> 13 12 0.0000512 -1.69e-4 <dbl [2]> <dbl [2]> <dbl [2 × 2]> 0.00107
#> 14 13 0.0000118 -3.94e-5 <dbl [2]> <dbl [2]> <dbl [2 × 2]> 0.00100
#> 15 14 0.00000275 -9.05e-6 <dbl [2]> <dbl [2]> <dbl [2 × 2]> 0.00101
#> 16 15 0.000000628 -2.13e-6 <dbl [2]> <dbl [2]> <dbl [2 × 2]> 0.00166
#> 17 16 0.000000152 -4.76e-7 <dbl [2]> <dbl [2]> <dbl [2 × 2]> 0.00102
summary(track)
#> Iterations: 16
#> Function improvement: 170 -> 1.521e-07
#> Computation time: 0.04125 seconds
#> Initial parameter: 0, 0
#> Final parameter: 3, 2
ggplot2::autoplot(track)The following is the optim maximization track of the
Beta-PDF:
optim_track(
f = dbeta, p = 0, lower = 0, upper = 1, shape1 = 4, shape2 = 2, method = "Brent", minimize = FALSE
) |> ggplot2::autoplot()Contact
If you have any questions, found a bug, need a feature, just file an issue on GitHub.