Learn R Programming

traineR (version 2.2.11)

ROC.plot: ROC.plot

Description

Function that plots the ROC curve of a prediction with only 2 categories.

Usage

ROC.plot(prediction, real, .add = FALSE, color = "red")

Value

A plot object.

Arguments

prediction

A vector of real numbers representing the prediction score of a category.

real

A vector with the real categories of the individuals in the prediction.

.add

A logical value that indicates if it should be added to an existing graph

color

Color of the ROC curve in the graph

See Also

prediction and performance

Examples

Run this code

iris2 <- dplyr::filter(iris,(Species == "setosa") | (Species == "virginica"))
iris2$Species <- factor(iris2$Species,levels = c("setosa","virginica"))
sam <- sample(1:100,20)
ttesting <- iris2[sam,]
ttraining <- iris2[-sam,]
model <- train.rpart(Species~.,ttraining)
prediction.prob <- predict(model,ttesting, type = "prob")
ROC.plot(prediction.prob$prediction[,2],ttesting$Species)

Run the code above in your browser using DataLab