data(Oudon)
obs <- as_transfr(st = Oudon$obs, hl = Oudon$hl)
obs <- velocity(obs, method = "loire2016")
obs <- uh(obs)
obs <- lagtime(obs)
obs <- rapriori(obs)
obs <- inversion(obs, parallel = TRUE, cores=2)
mdist1 <- hdist(x = obs, y = obs, method = "rghosh", parallel = c(FALSE,TRUE), cores=2)
mdist2 <- mdist1^2
rghosh1 <- seq(1000, 5000, by=100)
rghosh2 <- rghosh1^2
res <- rsimilarity_model(Rn = obs$st$RnInv,
predictors = list(rghosh1=1/mdist1, rghosh2=1/mdist2),
newpredictors = data.frame(rghosh1=1/rghosh1, rghosh2=1/rghosh2),
seed=1234)
plot(rghosh1, res$similarity, ylab = "Predicted Rn similarity")
plot(rghosh2, res$similarity, ylab = "Predicted Rn similarity")
# rsimilarity_model() is automatically called by mixr() if mdist is a list
obs <- mixr(obs = obs, mdist = mdist1,
similarity = list(rghosh1=1/mdist1, rghosh2=1/mdist2),
parallel = TRUE, cores=2, cv = TRUE, save_donor = TRUE)
obs$similarity_models
obs <- convolution(obs)
plot(obs, i = 1, attribute = c("Qobs", "Qsim"))
Run the code above in your browser using DataLab