Learn R Programming

treebalance (version 1.2.0)

totPathLen: Calculation of the total path length for rooted trees

Description

This function calculates the total path length \(TPL(T)\) for a given rooted tree \(T\). The tree must not necessarily be binary. \(TPL(T)\) is defined as $$TPL(T)=\sum_{x\in V(T)} \delta(x)$$ in which \(V(T)\) denotes the set of vertices of \(T\), and \(\delta(x)\) denotes the depth of the vertex \(x\). The total path length is an imbalance index.

For \(n=1\) the function returns \(TPL(T)=0\) and a warning.

For details on the total path length, see also Chapter 23 in "Tree balance indices: a comprehensive survey" (https://doi.org/10.1007/978-3-031-39800-1_23).

Usage

totPathLen(tree)

Value

totPathLen returns the total path length of the given tree.

Arguments

tree

A rooted tree in phylo format.

Author

Luise Kuehn

References

see e.g. R. P. Dobrow, J. A. Fill. Total path length for random recursive trees. Combinatorics, Probability and Computing, 8(4):317–333, 1999. doi: 10.1017/S0963548399003855.

see e.g. L. Takacs. On the total heights of random rooted trees. Journal of Applied Probability, 29(3):543–556, 1992. doi: 10.2307/3214892.

see e.g. L. Takacs. On the total heights of random rooted binary trees. Journal of Combinatorial Theory, Series B, 61(2):155–166, 1994. ISSN 0095-8956. doi: 10.1006/jctb.1994.1041.

Examples

Run this code
tree <- ape::read.tree(text="((((,),),(,)),(((,,),),(,)));")
totPathLen(tree)

Run the code above in your browser using DataLab