The analysis of environmental data often requires the detection of trends and change-points. This package provides the Mann-Kendall Trend Test, seasonal Mann-Kendall Test, correlated seasonal Mann-Kendall Test, partial Mann-Kendall Trend test, (Seasonal) Sen's slope, partial correlation trend test and change-point test after Pettitt.
Package: | trend |
Type: | Package |
Version: | 0.2.0 |
Date: | 2016-05-14 |
License: | GPL-3 |
LazyLoad: | yes |
csmk.test | Correlated Seasonal Mann-Kendall Test |
cs.test | Cox and Stuart trend test |
maxau | Suspended sediment concentration (s) and |
discharge (Q) for the River Rhine at Maxau, | |
annual averages | |
mk.test | Mann-Kendall Trend Test |
PagesData | Simulated data of Page |
partial.cor.trend.test | Partial correlation trend test |
partial.mk.test | Partial Mann-Kendall Test |
pettitt.test | Pettitt's test for change-point-detection |
sea.sens.slope | Seasonal Sen's slope and intercept |
sens.slope | Sen's slope and intercept |
smk.test | Seasonal Mann-Kendall Test |
summary.trend.test | Summary Method for Class 'trend' |
wm.test | Wallis and Moore phase-frequency test |
ww.test | Wald-Wolfowitz test for independence and stationarity |
Bahrenberg, G., Giese, E. and Nipper, J., (1992): Statistische Methoden in der Geographie, Band 2 Multivariate Statistik, Teubner, Stuttgart.
CHR (ed., 2010): Das Abflussregime des Rheins und seiner Nebenfluesse im 20. Jahrhundert, Report no I-22 of the CHR, p. 172.
D. R. Cox and A. Stuart (1955), Quick sign tests for trend in location and dispersion. Biometrika 42, 80-95.
Hipel, K.W. and McLeod, A.I., (2005). Time Series Modelling of Water Resources and Environmental Systems. http://www.stats.uwo.ca/faculty/aim/1994Book/.
Hirsch, R., J. Slack and R. Smith, (1982): Techniques of Trend Analysis for Monthly Water Quality Data. Water Resour. Res., 18, 107-121.
Libiseller, C. and Grimvall, A., (2002). Performance of partial Mann-Kendall tests for trend detection in the presence of covariates. Environmetrics 13, 71-84, http://dx.doi.org/10.1002/env.507.
Pettitt, A. N., (1979). A non-parametric approach to the change point problem. Journal of the Royal Statistical Society Series C, Applied Statistics 28, 126-135.
Richard O. Gilbert. (1987). Statistical methods for environmental pollution monitoring. John Wiley & Sons. pp 230
R. K. Rai, A. Upadhyay, C. S. P. Ojha and L. M. Lye (2013), Statistical analysis of hydro-climatic variables. In: R. Y. Surampalli, T. C. Zhang, C. S. P. Ojha, B. R. Gurjar, R. D. Tyagi and C. M. Kao (ed. 2013), Climate change modelling, mitigation, and adaptation. Reston, VA: ASCE. doi = 10.1061/9780784412718.
L. Sachs (1997), Angewandte Statistik. Berlin: Springer.
Sen, P.K., (1968): Estimates of the regression coefficient based on Kendall's tau, Journal of the American Statistical Association, 63, 1379--1389.
C.-D. Schoenwiese (1992), Praktische Statistik. Berlin: Gebr. Borntraeger.
W. A. Wallis and G. H. Moore (1941): A significance test for time series and other ordered observations. Tech. Rep. 1. National Bureau of Economic Research. New York.
A. Wald and J. Wolfowitz (1943), An exact test for randomness in the non-parametric case based on serial correlation. Annual Mathematical Statistics 14, 378--388.
WMO (2009), Guide to Hydrological Practices. Volume II, Management of Water Resources and Application of Hydrological Practices, WMO-No. 168.
cor
,
cor.test
,
csmk.test
,
mk.test
,
PagesData
,
partial.mk.test
,
partial.cor.trend.test
,
pettitt.test
,
print.trend.test
,
sea.sens.slope
,
sens.slope
smk.test
,
summary.trend.test
,
wm.test
,
ww.test
,
cs.test