# Example 1: pooled logistic regression switching model
library(dplyr)
sim1 <- tssim(
tdxo = 1, coxo = 1, allocation1 = 1, allocation2 = 1,
p_X_1 = 0.3, p_X_0 = 0.3,
rate_T = 0.002, beta1 = -0.5, beta2 = 0.3,
gamma0 = 0.3, gamma1 = -0.9, gamma2 = 0.7, gamma3 = 1.1, gamma4 = -0.8,
zeta0 = -3.5, zeta1 = 0.5, zeta2 = 0.2, zeta3 = -0.4,
alpha0 = 0.5, alpha1 = 0.5, alpha2 = 0.4,
theta1_1 = -0.4, theta1_0 = -0.4, theta2 = 0.2,
rate_C = 0.0000855, accrualIntensity = 20/30,
followupTime = 600, fixedFollowup = 0, days = 30,
n = 500, NSim = 100, seed = 314159)
fit1 <- ipcw(
sim1[[1]], id = "id", tstart = "tstart",
tstop = "tstop", event = "Y", treat = "trtrand",
swtrt = "xo", swtrt_time = "xotime",
base_cov = "bprog", numerator = "bprog",
denominator = c("bprog", "L"),
logistic_switching_model = TRUE, ns_df = 3,
swtrt_control_only = TRUE, boot = FALSE)
c(fit1$hr, fit1$hr_CI)
# Example 2: time-dependent covariates Cox switching model
fit2 <- ipcw(
shilong, id = "id", tstart = "tstart", tstop = "tstop",
event = "event", treat = "bras.f", swtrt = "co",
swtrt_time = "dco",
base_cov = c("agerand", "sex.f", "tt_Lnum", "rmh_alea.c",
"pathway.f"),
numerator = c("agerand", "sex.f", "tt_Lnum", "rmh_alea.c",
"pathway.f"),
denominator = c("agerand", "sex.f", "tt_Lnum", "rmh_alea.c",
"pathway.f", "ps", "ttc", "tran"),
swtrt_control_only = FALSE, boot = FALSE)
c(fit2$hr, fit2$hr_CI)
Run the code above in your browser using DataLab