# NOT RUN {
n <- 1000
s1 <- arima.sim(n = n, list(ar = 0.6, ma = c(0, -0.4)))
s2 <- arima.sim(n = n, list(ar = c(0, 0.1,0.3), ma = c(0.2, 0.4)))
s3 <- arima.sim(n = n, list(ar = c(0, 0.8)))
Snoise <- matrix(rnorm(5*n), ncol = 5)
S <- cbind(s1, s2, s3, Snoise)
A <- matrix(rnorm(64), 8, 8)
X <- S %*% t(A)
ladle_SOBI <- SOBIladle(X, l = 20, sim = "geom")
# The estimated number of non-white-noise components
summary(ladle_SOBI)
# The ladle plot
ladleplot(ladle_SOBI)
# Time series plots of the estimated components
plot(ladle_SOBI)
# Note that AMUSEladle with lag 1 does not work due to the lack of short range dependencies
ladle_AMUSE <- AMUSEladle(X)
summary(ladle_AMUSE)
ladleplot(ladle_AMUSE)
# xts series as input
library("xts")
data(sample_matrix)
X2 <- as.xts(sample_matrix)
ladle_SOBI_xts <- SOBIladle(X2, l = 20, sim = "geom")
plot(ladle_SOBI_xts, multi.panel = TRUE)
# zoo series as input
X3 <- as.zoo(X)
ladle_SOBI_zoo <- SOBIladle(X3, l = 20, sim = "geom")
plot(ladle_SOBI_zoo)
# }
Run the code above in your browser using DataLab